

Clean Room System

INTL. PATENT PENDING

When you move. We move_____

Rollon S.p.A. was founded in 1975 as a manufacturer of linear motion components. Today Rollon group is a leading name in the design, production, and sale of linear rails, telescopic rails, and actuators, with headquarters based in Italy and offices and distributors located throughout the world. Rollon products are used in many industries, providing creative and efficient solutions in a wide variety of applications.

Rollon solutions for linear motion

Actuator System Line

Linear Rails

Rails with roller bearings Rails with caged ball bearings Rails with recirculating ball bearing

Telescopic Rails Rails with partial/total extension Heavy duty rails Rails for automated and manual applications

Actuators

Belt driven actuators Ball screw driven actuators Rack and pinion actuators

Solutions for industrial automation

Multi-axis for pick and place Telescopic actuators Seventh axis for robots Solutions for metal sheet handling

Core Competencies

- Full range of linear rails, telescopic rails and actuators
- Worldwide presence with branches and distributors
- Fast delivery all over the world
- Large technical know-how for applications

Standard solutions

Wide range of products and sizes Linear rails with roller and caged ball bearings Heavy duty telescopic rails Belt or ball screw driven linear actuators Multi-axis systems

Collaboration

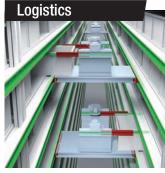
International know-how in several industries Project consultancy Maximizing performance and cost optimization

Applications

Customization

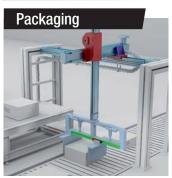
Special products Research and development of new solutions Technologies dedicated to different sectors Optimal surface trea

Medical



Railway

Special Vehicles



Robotics

Industrial

Clean Room System

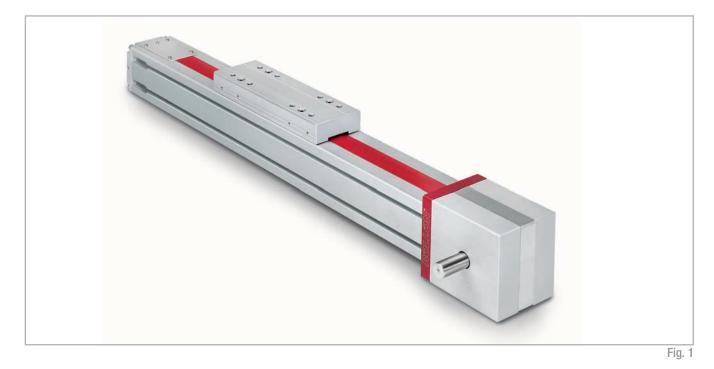
1 ONE series

	ONE series description	CRS-2
	The components	CRS-3
	The linear motion system	CRS-4
	ONE 50	CRS-5
	ONE 80	CRS-6
	ONE 110	CRS-7
	Planetary gear	CRS-8
	Accessories	CRS-9
1	Ordering key	CRS-11

Static load and service life Plus-Clean Room-Smart-Eco-PrecisionsL-2Static load and service life UnilinesL-4Data sheetsL-9

Technical features overview // ~

	Reference		Sect	ion		Driving		Anticorrosion	Protection
	Family	Product	Balls	Rollers	Toothed belt	Ball screw	Rack and pinion		
		ELM			Occasion of				
Plus System		ROBOT			Openando Openando			•	
		SC	Ţ		Openance Contraction			•	
Clean Room System		ONE			Oronononoo			•	
	0	E-SMART	L.		Openanopao Openanopao				
Smart System		R-SMART	L]		Openano openano				
	101	S-SMART	L)		Onnanana)				
Eco System		ECO			Orano page				
Uniline System		A/C/E/ED/H			Orono popo				
		ТН				an _m			
Precision		TT				<u>an [</u> m			
System		ΤV	Ţ			<i>amm</i>			
		ТК				un[_]nn			


Reported data must be verified according to the application. See verification under static load and lifetime on page SL-2 and SL-7 For a complete overview about technical data, please consult our catalogues at www.rollon.com. * Longer stroke is available for jointed version

Size		k. load capa per carriage [N]			static mor per carriage [Nm]		Max. travel speed	Max. acceleration	Repeatability accuracy	Max. travel or stroke	
	F _x	Fy	F _z	M _x	M _y	M _z	[m/s]	[m/s²]	[mm]	(per system) [mm]	
50-65-80-110	4440	79000	79000	1180	7110	7110	5	50	± 0,05	6000*	P L S
100-130- 160-220	8510	158000	158000	13588	17696	17696	5	50	± 0,05	6000*	
65-130-160	5957	86800	86800	6770	17577	17577	5	50	± 0,05	2500	
50-80-110	4440	92300	110760	1110	9968	8307	5	50	± 0,05	6000*	C R S
30-50-80-100	4440	87240	87240	1000	5527	5527	4	50	± 0,05	6000*	S S
120-160-220	8880	237000	237000	20145	30810	30810	4	50	± 0,05	6000*	
50-65-80	2250	51260	51260	520	3742	3742	4	50	± 0,05	2000	
60-80-100	4070	43400	43400	570	4297	4297	5	50	± 0,05	6000*	E S
40-55-75-100	1000	25000	17400	800,4	24917	15752	9	20	± 0,05	5700*	U S
90-110-145	27000	86800	86800	3776	2855	2855	2		± 0,005	1500	P S
100-155- 225-310	58300	230580	274500	30195	26627	22366	2,5		± 0,005	3000	
60-80- 110-140	58300	48400	48400	2251	3049	3049	2,5		± 0,01	4000	
40-60-80	12462	50764	50764	1507	622	622	1,48		± 0,003	810	

ONE series description

The ONE series actuators are belt driven linear actuators specifically designed for Clean Room applications. The ONE series is certified compliant with ISO CLASS 3 (DIN EN ISO 14644-1) and CLASS 1 US FED STD 209E cleanroom standards by the Fraunhofer Institute IPA in Stuttgard.

The ONE series reduces particle contamination using a specially designed straight seal that isolates the internals of the actuator from the environment. In addition to particle containment, the ONE series can support a vacuum pump (up to 0,8 bar) to remove and transport contaminates from the interior of the actuator to filtration sites. The 2 vacuum ports are located on the drive and idle head.

All internal components of the ONE series actuators are designed to minimize particle release. Component materials are limited to stainless steel. Where stainless steel is not an option, special treatments are used to ensure low particle release.

Special lubrications designed for use in cleanroom or vacuum environments are used for all bearings and linear rails.

The components

Extruded bodies

The anodized aluminium extrusions used for the bodies of the Rollon ONE series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strenght and reduced weight. Aluminium alloy 6060 is used (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Driving belt

ONE Series is the first linear units driven by timing belt capable to achieve ISO CLASS 3.

We are using selected higth quality polyurethane timing belts, AT profile, manufactured by leading companies in this field.

Carriage

The carriage of the Rollon ONE series linear units are made entirely of anodized aluminum. Each carriage has mounting holes fitted with stainless steel thread inserts. Rollon offers multiple carriages to accommodate a vast array of applications. The unique design of the carriage allows for the sealing strip to pass through the carriage.

Sealing strip

Rollon ONE series linear units are equipped with a polyurethane sealing strip to prevent particles generated inside the unit to go outside. The sealing strip runs the length of the body and is kept in position by micro-bearings located with in the carriage. This minimizes frictional resistance as the strip passes through the carriage while providing maximum protection.

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω.m.10 ⁻⁹	°C
dm ³	mm ²	К	m . K	kg . K		
2.7	69	23	200	880-900	33	600-655

Tab. 2

C R S

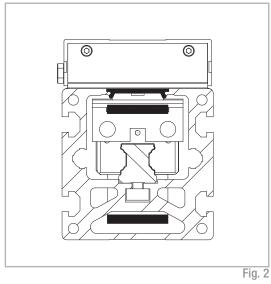
Mechanical characteristics

Rm	Rp (02)	А	HB
N 	N mm ²	%	—
205	165	10	60-80
			Tab. 3

The linear motion system

Certified Clean Room Class

ONE Series is a device tested by FRAUNHOFER IPA Institute - Stuttgart (D). Rollon achieved the ISO CLASS 3 (DIN EN ISO 14644-1) and CLASS 1 US FED STD 209E cleanroom standard using a combination of a vacuum pump and our special sealing belt (Intl. Patend Pending).


Vacuum system

The ONE series actuator has specific connection ports on the drive and the idle end of the unit to connect a vacuum system. The vacuum quality must be evaluated case by case, but Rollon has had success with 0,8 bar on a ONE 80 with a stroke of 1.000 mm up to 4.000 mm. A vacuum was used in conjunction to Rollon's special sealing strip to achieve ISO CLASS 3 (DIN EN ISO 14644-1) and CLASS 1 US FED STD 209E

Selected mechanical components

ONE Series is assembled with select high-quality components. Only Stainless Steel (AISI 303, AISI 440C) is used for bearings, linear guides, shafts, pulleys, and other metallic components. Where it is impossible to use Stainless Steel, Rollon provides a special treatment tested under severe conditions and under particle generation.

ONE SP section

Lubrication

ONE Series is equiped with "innovate and hi-tech linear guides" that feature special ball cages to maintain spacing. This feature supports a longterm maintenance and a low particle generation if combined with special lubricant, specifically developed and adopted for Clean Room applications.

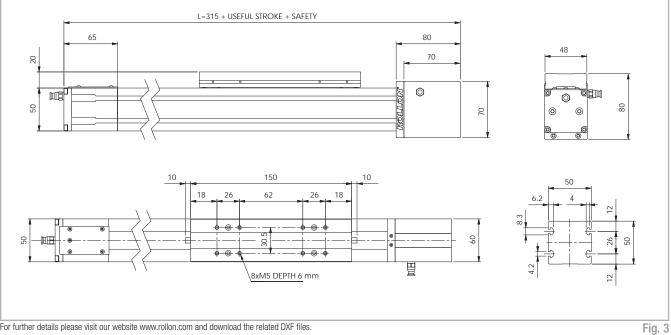
Range

ONE Series is now available in 3 different sizes, for multi axes combinations:

- ONE 80
- ONE 100

Maximum stroke is 6.000 mm, except ONE 50 where the maximum stroke is 3.700 mm.

For technical details and load capacities, please refer to next pages.


INTL. PATENT PENDING

ONE 50

ONE 50 >

ONE 50 Dimension

For further details please visit our website www.rollon.com and download the related DXF files.

Technical data

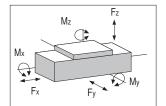
	Туре
	ONE 50
Max. useful stroke length [mm]	3700
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4
Max. acceleration [m/s ²]	50
Type of belt	22 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36,61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	0.4
Zero travel weight [kg]	1.8
Weight for 100 mm useful stroke [kg]	0.4
Starting torque [Nm]	0.4
Moment of inertia of pulleys [g mm ²]	19810
*1) Positioning repeatability is dependant on the type of transmission used	Tab. 4

ONE 50 - Load capacity

Туре	F [1	: X V]	F [1	; v v]	F [N	: z V]	N [N	l _x m]	N [Ni	V	N [N	Z
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn
ONE 50	809	508	7000	4492	7000	4492	42	27	231	148	231	148
See verification under static load and lifetime on page SL-2 and SL-3									Tab. 7			

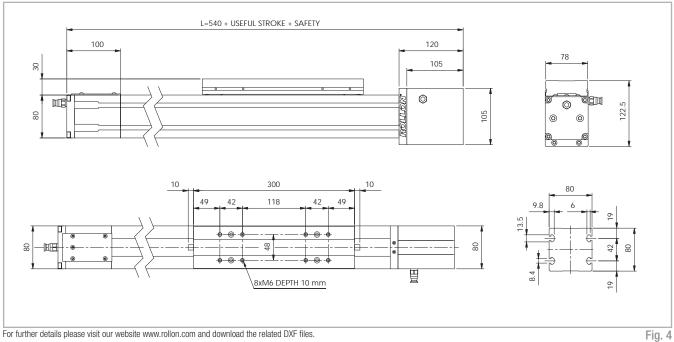
Moments of inertia of the aluminum body

Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
ONE 50	0.025	0.031	0.056
			Tab. 5


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
ONE 50	22 AT 5	22	0.072
			Tab. 6


Belt length (mm) = 2 x L - 130

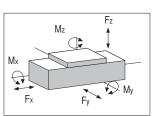
ONE 80 >

ONE 80 Dimension

Technical data

	Туре
	ONE 80
Max. useful stroke length [mm]	6000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	32 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.48
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	2.7
Zero travel weight [kg]	10.5
Weight for 100 mm useful stroke [kg]	1
Starting torque [Nm]	2.2
Moment of inertia of pulleys [g mm ²]	388075
*1) Positioning repeatability is dependant on the type of transmission used	Tab. 8

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
ONE 80	0.136	0.195	0.331
			Tab. 9

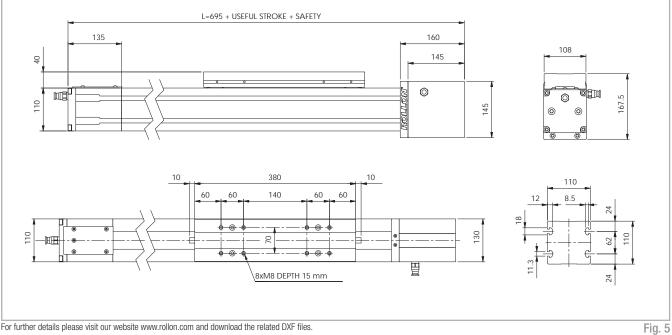
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
ONE 80	32 AT 10	32	0.185
			Tab. 10

Belt length (mm) = 2 x L - 230

ONE 80 - Load capacity


Туре	F [1	: × V]	F [1	: v N]	F [1	: z V]	N [N		N [N	V	N [Ni	Z
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn
ONE 80	2013	1170	38480	21735	46176	25875	398	223	3371	1889	2809	1587
See verification under static	load and lifetim	ne on page SL·	2 and SL-3									Tab. 11

Tab. 11

ONE 110

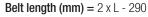
ONE 110 Dimension

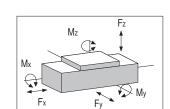
For further details please visit our website www.rollon.com and download the related DXF files.

Technical data

	Туре
	ONE 110
Max. useful stroke length [mm]	6000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10
Type of pulley	Z 27
Pulley pitch diameter [mm]	85.94
Carriage displacement per pulley turn [mm]	270
Carriage weight [kg]	5.6
Zero travel weight [kg]	22.5
Weight for 100 mm useful stroke [kg]	1.4
Starting torque [Nm]	3.5
Moment of inertia of pulleys [g mm ²]	2.193 · 10 ⁶
*1) Positioning repeatability is dependant on the type of transmission used	Tab. 12

Moments of inertia of the aluminum body

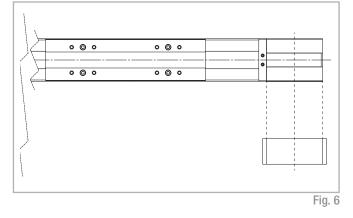

Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
ONE 110	0.446	0.609	1.054
			Tab. 13


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
ONE 110	50 AT 10	50	0.290
			Tab. 14

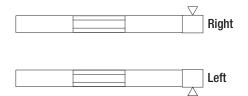
C R S

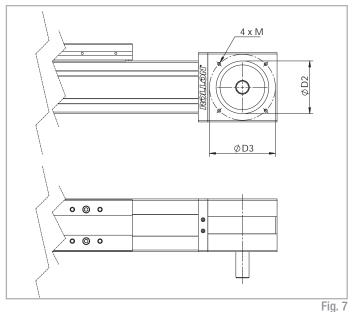


ONE 110 - Load capacity

Туре	F [1	F _x [N]		F _y F _z M _x [N] [N] [Nm]		*	N [Ni	У	N [Ni	Z		
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn
ONE 110	4440	2940	92300	46003	110760	54765	1110	549	9968	4929	8307	4140
See verification under static	load and lifetin	ne on page SL·	2 and SL-3									Tab. 15

Planetary gears


Assembly to the right or to the left of the driving head

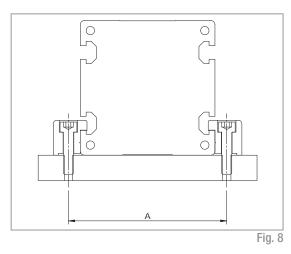

The series ONE linear units can be fitted with several different drive systems. In each case, the driving pulley is attached to the reduction gearshaft by means of a tapered coupling to ensure high accuracy over a long period of time.

Versions with planetary gears

Planetary gears are used for highly dynamic robot, automation and handling applications involving stressing cycles and with high level precision requirements. Standard models are available with clearance from 3' to 15' and with a reduction ratio from 1:3 to 1:1000. For assembly of non-standard planetary gear, contact our offices.

Shaft with centering

Unit	Shaft type	D2	D3	м	Head code AS left	Head code AS right
ONE 50	AS 12	55	70	M5	VB	VA
ONE 80	AS 20	80	100	M6	VB	VA
ONE 110	AS 25	110	130/160	M8	VB	VA

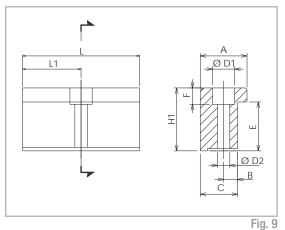

Tab. 16

Accessories

Fixing by brackets

The linear motion systems used for the Rollon series ONE linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the units, we recommend the use of the dedicated T-Slots in the extruded bodies as shown below.



Unit	A (mm)
ONE 50	62
ONE 80	94
ONE 110	130
	Tab. 17

Warning:

Do not fix the linear units through the drive ends.

Fixing brackets

Dimensions (mm)

Dimensions	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
Unit	A	H1	В	С	E	F	D1	D2	L	L1	Code
ONE 50	20	14	6	16	10	6	10	5.5	35	17.5	1000958
ONE 80	20	20.7	7	16	14.7	7	11	6.4	50	25	1001491
ONE 110	36.5	28.5	10	31	18.5	11.5	16.5	10.5	100	50	1001233
											Tab. 18

Fixing bracket

Anodized aluminum block for fixing the linear units through the side T-Slots of the body.

T-Nuts

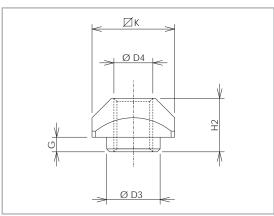
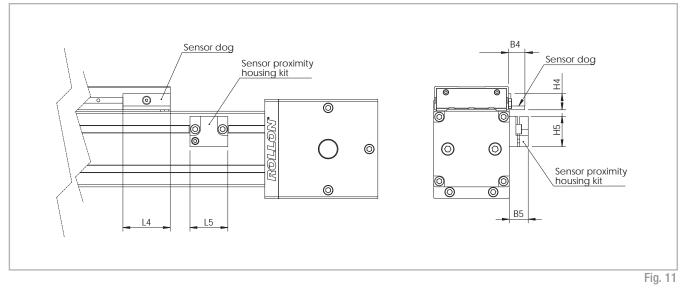


Fig. 10

Dimensions (mm)


('					
Unit	D3	D4	G	H2	К	Code
ONE 50	-	M4	-	3.4	8	1001046
ONE 80	8	M6	3.3	8.3	13	1000043
ONE 110	11	M8	2.8	10.8	17	1000932
						Tab. 19

T-nuts

Steel nuts to be used in the slots of the body.

1 ONE series

Proximity

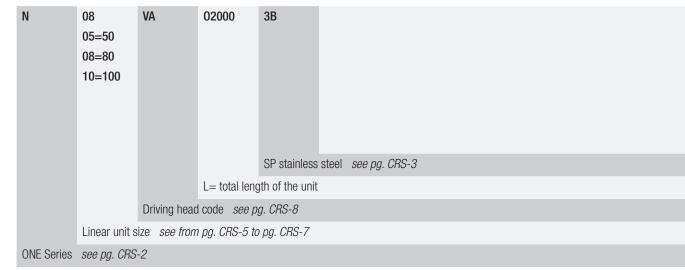
Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing onto the profile.

Sensor dog

L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Dimensions (mm)


Unit	B4	B5	L4	L5	H4	H5	For proximity	Sensor dog code	Sensor proximity housing kit code
ONE 50	9.5	14	25	29	11.9	22.5	Ø 8	G000268	G000211
ONE 80	17.2	20	50	40	17	32	Ø 12	G000267	G000209
ONE 110	17.2	20	50	40	17	32	Ø 12	G000267	G000210

Tab. 20

C R S

Identification codes for the ONE linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Static load and service life Plus-Clean Room-Smart-Eco-Precision

Static load

In the static load test, the radial load rating F_y , the axial load rating F_z , and the moments M_x , M_y und M_z indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor S_o is used, which accounts for the special conditions of the application defined in more detail in the table below:

Safety factor S₀

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	2 - 3
Normal assembly conditions	3 - 5
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	5 - 7
	Fig. 1

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_0 .

$$\frac{\mathsf{P}_{fy}}{\mathsf{F}_{y}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \frac{\mathsf{P}_{fz}}{\mathsf{F}_{z}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \frac{\mathsf{M}_{1}}{\mathsf{M}_{x}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \frac{\mathsf{M}_{2}}{\mathsf{M}_{y}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \frac{\mathsf{M}_{3}}{\mathsf{M}_{z}} \leq \frac{1}{\mathsf{S}_{0}}$$

Fig. 2

Fig. 3

The above formulae only apply to a one load case. If one or more of the forces described are acting simultaneously, the following calculation must be carried out:

The safety factor S_0 can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications, higher safeties are required. For further information, please contact our Application Engineering Department.

Belt safety factor referred to the dynamic F_x

Impact and vibrations	Speed / acceleration	Orietation	Safety Factor
No impacts	Low	horizontal	1.4
and/or vibrations	LOW	vertical	1.8
Light impacts	Medium	horizontal	1.7
and/or vibrations	IVIEUIUIII	vertical	2.2
Strong impacts	High	horizontal	2.2
and/or vibrations	High	vertical	3
			Tab. 1

SL-2

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km.

The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$L_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

 $\begin{array}{ll} L_{km} & = \mbox{theoretical service life (km)} \\ \mbox{Fz-dyn} & = \mbox{dynamic load rating (N)} \\ \mbox{P}_{eq} & = \mbox{acting equivalent load (N)} \\ \mbox{f}_i & = \mbox{service factor (see tab. 2)} \end{array}$

Fig. 4

The effective equivalent load P_{eq} is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

For SP types

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 5

For CI and CE types

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}}) \cdot F_{y}$$

Fig. 6

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f

f _i	
no shocks or vibrations, smooth and low-frequency changes in direction; (α < 5m/s ²) clean operating conditions; low speeds (<1 m/s)	1.5 - 2
Slight vibrations; medium speeds; (1-2 m/s) and medium-high frequency of the changes in direction (5m/s ² < α < 10 m/s ²)	2 - 3
Shocks and vibrations; high speeds (>2 m/s) and high-frequency changes in direction; (α > 10m/s ²) high contamination, very short stroke	> 3

Static load and service life Uniline

Static load

In the static load test, the radial load rating $C_{_{0rad}}$, the axial load rating $C_{_{0ax}}$, and the moments M_x , M_y und M_z indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor S_0 is used, which accounts for the special conditions of the application defined in more detail in the table below:

Safety factor S_o

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	1 - 1.5
Normal assembly conditions	1.5 - 2
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	2 - 3.5
	Fig. 7

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_n .

$$\frac{P_{0rad}}{C_{0rad}} \leq \frac{1}{S_0} \qquad \qquad \frac{P_{0ax}}{C_{0ax}} \leq \frac{1}{S_0} \qquad \qquad \frac{M_1}{M_x} \leq \frac{1}{S_0} \qquad \qquad \frac{M_2}{M_y} \leq \frac{1}{S_0} \qquad \qquad \frac{M_3}{M_z} \leq \frac{1}{S_0}$$

The above formulae apply to a one load case. If one or more of the forces described are acting simultaneously, the following test must be carried out:

$$\frac{P_{0rad}}{C_{0rad}} + \frac{P_{0ax}}{C_{0ax}} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z} \leq \frac{1}{S_0}$$

P _{0rad}	= acting radial load (N)
C _{0rad}	= allowed radial load (N)
P _{0ax}	= acting axial load (N)
C _{0ax}	= allowed axial load (N)
M_{1}, M_{2}, M_{3}	= external moments (Nm)
M_x , M_y , M_z	= maximum allowed moments
	in the different load directions (Nm)

The safety factor S_0 can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications, higher safeties are required. For further information, please contact our Application Engineering Department.

Fig. 9

Fig. 8

Calculation formulae

Moments $\rm M_{v}$ and $\rm M_{z}$ for linear units with long slider plate

The allowed loads for the moments $M_{_y}$ and $M_{_z}$ depend on the length of the slider plate. The allowed moments $M_{_{Zn}}$ and $M_{_{yn}}$ for each slider plate length are calculated by the following formulae:

$$S_{n} = S_{min} + n \cdot \Delta S$$

$$M_{zn} = (1 + \frac{S_{n} - S_{min}}{K}) \cdot M_{z \min}$$

$$M_{yn} = (1 + \frac{S_{n} - S_{min}}{K}) \cdot M_{y \min}$$

M_{zn}	=	allowed moment (Nm)
$M_{z min}$	=	minimum values (Nm)
M _{yn}	=	allowed moment (Nm)
M _{y min}	=	minimum values (Nm)
S	=	length of the slider plate (mm)
S_{\min}	=	minimum length of the slider plate (mm)
ΔS	=	factor of the change in slider length
Κ	=	constant

Fig. 10

Туре	M _{y min}	M _{z min}	S _{min}	ΔS	К
	[Nm]	[Nm]	[mm]		
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310		130
C75L	674	116	440	10	155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270
					Tab. 3

Moments $\rm M_{_{\rm V}}$ and $\rm M_{_z}$ for linear units with two slider plates

L_ =

Μ.,

M_z

The allowed loads for the moments M_y and M_z are related to the value of the distance between the centers of the sliders. The allowed moments M_{yn} and M_{zn} for each distance between the centers of the sliders are calculated by the following formulae:

$$\begin{array}{lll} & H_{y} & = \text{ allowed moment (Nm)} \\ & M_{y} & = \text{ allowed moment (Nm)} \\ & M_{z} & = \text{ allowed moment (Nm)} \\ & M_{z} & = \text{ allowed moment (Nm)} \\ & M_{y\,\text{min}} & = \text{ minimum values (Nm)} \\ & M_{z\,\text{min}} & = \text{ minimum values (Nm)} \\ & M_{z\,\text{min}} & = \text{ minimum values (Nm)} \\ & L_{n} & = \text{ distance between the centers of the sliders (mm)} \\ & L_{min} & = \text{ minimum value for the distance between the centers of the sliders (mm)} \\ & \Delta L & = \text{ factor of the change in slider length} \end{array}$$

Fig. 11

Туре	M _{y min}	M _{z min}	L _{min}	ΔL
	[Nm]	[Nm]	[mm]	
A40D	70	193	235	5
A55D	225	652	300	5
A75D	771	2288	416	8
A100D	2851	4950	396	50
C55D	492	90	300	5
C75D	1809	312	416	8
E55D	450	652	300	5
E75D	1543	2288	416	8
ED75D	3619	2288	416	8
				Tab. 4

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km. The corresponding values for each liner unit are listed in Table 45 shown

$$L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^{\circ}$$

The effective equivalent load P is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

below. The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

L	= theoretical service life (km)
С	= dynamic load rating (N)
Р	= acting equivalent load (N)
f _i	= service factor (see tab. 5)
f _c	= contact factor (see tab. 6)
f _h	= stroke factor (see fig. 13)

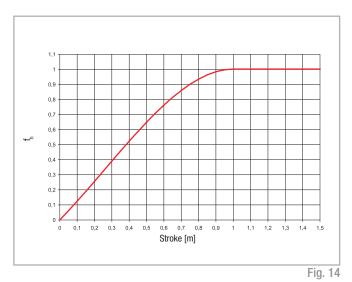
Fig. 12

$$P = P_{r} + (\frac{P_{a}}{C_{0ax}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}}) \cdot C_{0rad}$$

Fig. 13

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

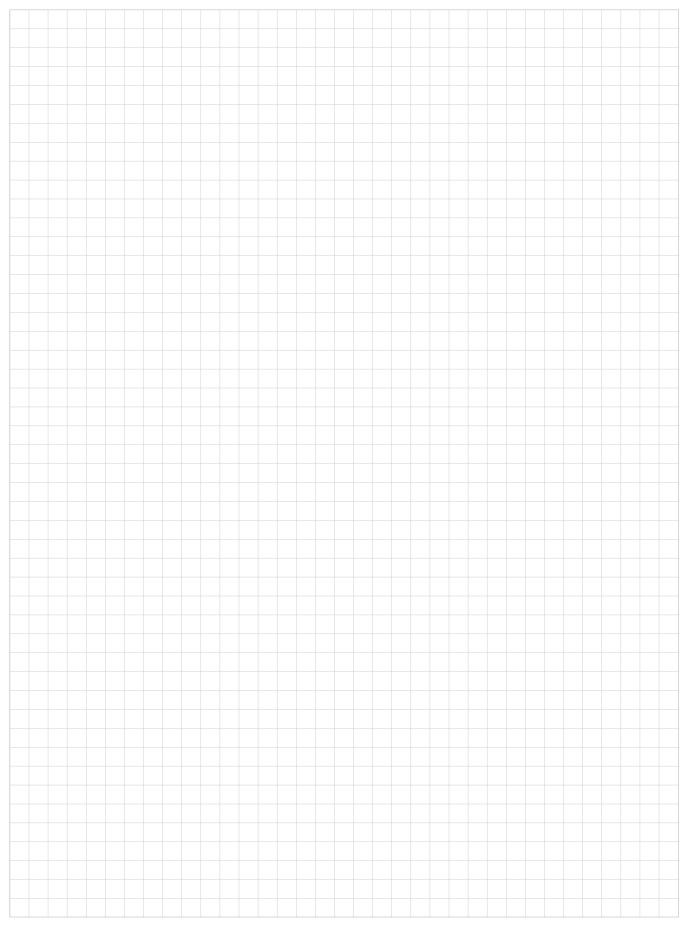
Service factor f_i


f,	
No shocks or vibrations, smooth and low-frequency changes in direction; clean operating conditions; low speeds (<1 m/s) $$	1 - 1.5
Slight vibrations; medium speeds; (1-2,5 m/s) and medium-high frequency of the changes in direction	1.5 - 2
Shocks and vibrations; high speeds (>2.5 m/s) and high-frequency changes in direction; high contamination	2 - 3.5
	Tab. 5

Contact factor f

Stroke factor f_h

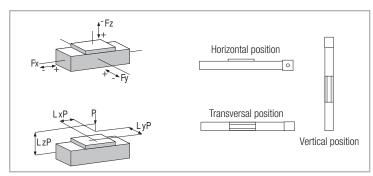
The stroke factor f_h accounts for the higher stress on the raceways and rollers when short strokes are carried out at the same total run distance. The following diagram shows the corresponding values (for strokes above 1 m, f_h remains 1):


Determination of the motor torque

The torque C_m required at the drive head of the linear axis is calculated by the following formula:

$$C_m = C_v + (F \cdot \frac{D_p}{2})$$

- C_m = torque of the motor (Nm)
- C_v = starting torque (Nm)
- F = force acting on the toothed belt (N)
- D_n = pitch diameter of pulley (m)



General data:	Date: Inquiry N°:
Address:	Contact:
Company:	Date:
Phone:	Fax:

Technical data:

				X axis	Y axis	Z axis
Useful stroke (Including safety overtravel)		S	[mm]			
Load to be translated		Р	[kg]			
Location of Load in the	X-Direction	LxP	[mm]			
	Y-Direction	LyP	[mm]			
	Z-Direction	LzP	[mm]			
Additional force	Direction (+/-)	Fx (Fy, Fz)	[N]			
Position of force	X-Direction	Lx Fx (Fy, Fz)	[mm]			
	Y-Direction	Ly Fx (Fy, Fz)	[mm]			
	Z-Direction	Lz Fx (Fy, Fz)	[mm]			
Assembly position (Horizontal/Vertical/Transversal						
Max. speed		V	[m/s]			
Max. acceleration		а	[m/s ²]			
Positioning repeatability		∆s	[mm]			
Required life		L	yrs			

Attention: Please enclose drawing, sketches and sheet of the duty cycle

ROLLON S.p.A. - ITALY

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.it - infocom@rollon.it

Branches:

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.A.R.L. - FRANCE

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON Ltd - CHINA

No. 16 Jin Wen Road, China, Shanghai, 201323 Phone: +86 21 5811 8288 www.rollon.cn.com - info@rollon.cn.com

ROLLON - JAPAN

3F Shiodome Building, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022 Japan Phone +81 3 6721 8487 www.rollon.jp - info@rollon.jp

Consult the other ranges of products

All addresses of our global sales partners can also be found at www.rollon.com

The content of this document and its use are subject to the general terms of sale of ROLLON available on the web site www.rollon.com Changes and errors expected. The text and images may be used only with our permission.

ROLLON B.V. - NETHERLANDS

Ringbaan Zuid 8 6905 DB Zevenaar Phone: (+31) 316 581 999 www.rollon.nl - info@rollon.nl

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rolloncorp.com - info@rolloncorp.com

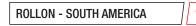
ROLLON India Pvt. Ltd. - INDIA

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in Rep. Offices:

ROLLON S.p.A. - RUSSIA

117105, Moscow, Varshavskoye shosse 17, building 1 Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

• Distributors


ROLLON Ltd - UK

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR Phone: +44 (0) 1234964024 www.rollon.uk.com - info@rollon.uk.com

V

Rollon Branches & Rep. Offices

Regional Manager:

R. Joaquim Floriano, 397, 2o. andar Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 3198 3645 www.rollonbrasil.com.br - info@rollonbrasil.com

Distributor