

AUTOMATION

TABLE OF CONTENTS

AUTOMATION 4-140
NEW PRODUCTS
MPA2 Series 4-5
175MU Series 6-7
175SO Series 8
175MD Series 9-10
PERCENTAGE TIMER
CP Series. 12
304 Series 13-14
304G Series 15-16
304GX Series. 17-18
ELECTROMECHANICAL TIMER
305E Series 19-21
322B Series 22-23
INTERVAL TIMER
400 Series 24
PRECISION SWITCH CAM PROGRAMMER
324C Series 25-27
1/16 DIN TIMERS
405AR Series 28
405C Series 29-31
407C Series 32-34
409B Series 35-36
417B Series 37-38
422AR Series 39-40
425A Series 41-42
MULTI-FUNCTION 1/32 DIN TIMER/COUNTER
5708A Series 43
WEEKLY DIN RAIL MOUNTED TIMER
7DT-2CH Series 44
TIME DELAY RELAYS
313B Series 45-46
314B Series 47-48
319E Series. 49-50
328E Series 51-52
329A Series 53-54
339B Series 55-56
ETN Series 57
TBB Series 58
TBC Series 59
TBD Series 60
TBE Series. 61
TBF Series 62
TBG Series. 63
TBL Series 64
TBU Series 65-66
TDB/TUB Series 67
TDC/TUC Series 68
TDD/TUD Series 69
TDE/TUE Series 70
TDF Series. 71

MOTOR PROTECTION
 PHASE VOLTAGE MONITORS

Feature Matrix 140-143
POWER QUALITY
VCFP96M. 144-145
PHASE VOLTAGE MONITORS
DPR-175A Series 146
DPR-350C Series 147-148
SLU-0200 149
SLU-0201 150
SLU-100 Series 151
SLU-600 Series 152-153
PRA Series 154
SLA Series 155-157
PBC Series 158
PBD Series 159
PBE Series 160
SLB Series 161
SLC Series 162
SLD Series 163
SLE Series 164
SLH Series 165
SLJ Series 166
SLM Series 167
UOA Series 168
VBA Series 169
Applications 170-171
MOTOR AUTO-RESTART RELAY
MAR Series 172-173
LIQUID LEVEL CONTROL
LPC Series 174
CURRENT MONITORS
Feature Matrix 175
CBA Series 176
CDD Series 177
CDO Series 178
CDU Series 179
CLB Series 180
CMB Series 181
CMD Series 182
CMG Series 183
CMG-0101 Series 184
CMI Series 185
CML Series 186
CMO Series 187
CMU Series 188
CT Series 189-190
PUMP \& LEVEL CONTROLS
ARA, ARM Series 191
ALTERNATING RELAYS \& CONTROLLERS
ARA, ARB Series 192
ARC, ARD, AUC, AUD Series 193
ARA Series 194-197
ARM Series 198-203
ISOLATED SWITCHES
Information 204
ISO Series 205
ISO, ISL Series 206-207
HVAC CONTROLS
AC Series 208
AC-503 Series 209
AC-505-5 Series 210
ASC-500 Series 211
AC-800 Series 212
AC-410 Series 213
CV Series. 214
SEAL FAILURE OVER-TEMPERATURE MONITORS
SPM Series 215-219
PHASE ROTATION TESTER
PRT Series 220
POWER ALERTS
UPA-100 Series 221
UPA-130 Series 221-223
UPA-200 Series 224-225
BFA Series 226-227
GFD Series 228
ACCESSORIES MOTOR PROTECTION
Sockets 229
Accessories 230
TERMS AND CONDITIONS
Inside back cover

Motor Protection Analyzer

FEATURES

MEASUREMENT OF:

- Current
- Voltage
- Frequency
- Power Factor (PF)
- Reactive Power (KVA)
- Real Power (KW)
- Energy Consumption (KWH)

REPORTS:

- Voltage \& Current report
- PF, KVA, KWH, KW report
- Adjusted Values report
- Total Motor Running Time report
- Start Mode report
- 20 Last Fault report
- Power Frequency report
- Motor Temperature report

COMMUNICATIONS:

- COM-LINK RS485@ 9600 baud output available (MODBUS RTU protocol)

PHYSICAL FEATURES:

- Din-Rail, Flat Surface or Flush mounting
- 16×2 LCD Display with current values, voltage values, and load report information on screen
- Four (4) push buttons for operation and protection parameter adjustments (I for START, 2 for ADJUST and I for SELECT)
- Enclosure material UL94V0

ADJUSTMENTS OF:

- Overload
- Undercurrent
- Overvoltage
- Undervoltage
- Current Unbalance
- Voltage Unbalance
- Frequency
- Trip Delay
- Start Up Delay after Voltage
- Fault Recovery
- Motor Thermal Class
- Clock Adjustment
- Control of Motor High-Inertia Load
- Schedule Timer
- AUTO / MANUAL Restart Mode
- Password

PROTECTION AGAINST:

- Overload / Undercurrent
- Overvoltage / Undervoltage
- Frequency Shift
- Voltage Unbalance
- Current Unbalance
- Single Phasing
- Phase Reversal
- Locked Rotor

OTHERS:

- Thermal memory

OVERVIEW

MPA2 is a micro-controlled based three-phase Motor Protection Analyzer Relay specifically designed to protect electric loads and motors from failure and damage due to common current and voltage faults.
MPA2 constantly supervises current and voltage values. When any harmful condition occurs, the output connection is deactivated until the fault disappears, power line conditions return to an acceptable level and the motor has been totally cooled. Specific timing such as Start Up Delay (TC) and Trip Delay (TD) are incorporated to prevent nuisance tripping due to rapid power fluctuations.
MPA2 provides LCD Display to indicate the output status voltage, current, unbalance, frequency and load status and failure conditions. It also provides four (4) push buttons (1 for START, 2 for ADJUST and 1 for SELECT) for operation and protection parameters adjustment. Besides these mentioned advantages, a Communication Port with MODBUS RTU protocol is included with MPA2.
An innovative mechanical design allows two (2) placement options:

- Symmetrical Din-Rail mounting.
- Flat Surface mounting, using an exclusive attachable mounting ear.
MPA2 has been developed using the most advanced technology and designed in accordance with the IEEE, IEC and NEMA protection standards and developed in compliance with IEC electromagnetic compatibility standards, working safely under the hardest electrical environments.
When you use a MPA2 Motor Protection Analyzer, you are working with the best solution to protect your most important investments.

PRODUCT STANDARDS

Designed according to $\mathbf{C e}$ Standards (LVD and EMC):

IEC

IEC
IEC
IEC
61010-1
60255-6
60255-8
60947-1

Designed according to:

UL 60947-4-1
IEEE C37.112

DIMENSIONS

(INCHES/MILLIMETERS)

The MPA2 provides electrical protection through general functions and setting ranges for intended use listed as follows:

VOLTAGE	Overvoltage: 5% up to 20% rated voltage
DETECTION	Undervoltage: -20% up to -5% rated voltage
	Unbalance: 2% up to 10% rated voltage
	Single Phasing: (IN $33 \%-0 U T 28 \%$)
RECOVERY \&	Start Up Delay after Voltage fault: 0 to 600 sec
DETECTION	Voltage Fault detection time: 1 to 30 sec
TIME	Phase Reversal detection time: $<1 \mathrm{sec}$
FREQUENCY	Frequency Shift: +/-2\% up to +/-10\% rated
DETECTION	frequency
CURRENT	Overcurrent: 5% up to 25%
DETECTION	Undercurrent: Adjustable by PF or by I nominal
	Unbalance: CUB > 48%
	Single Phasing: CUB $>60 \%$
POWER FACTOR	Power Factor: 0.0 up to 1.0
DETECTION	
THERMAL CLASS	Thermal Class: 5 to 30 (in step of one by one)
IEC 60255-8	

MODEL NUMBER

MODEL NUMBER	MPA2		
VOLTAGE			
208/220/240 V~		240	
440/480 V~		480	
AMPERAGE			
1-4 A			04
3.5-12.5 A			12
10-32 A			32
25-80 A			80
External Current Transformer			CT

ACCESSORIES

Standard RS485 Communications Cable	MPA2-COM
Current Transformer 30/5 amp	CT30/5
Current Transformer 50/5 amp	CT50/5
Current Transformer 100/5 amp	CT100/5
Current Transformer 200/5 amp	CT200/5
Current Transformer 500/5 amp	CT500/5
Current Transformer 1000/5 amp	CT1000/5

STANDARD STOCK

MPA2-240-CT
MPA2-480-32
MPA2-480-80
MPA2-480-CT
MPA2-COM

PHYSICAL FEATURES

SAFETY INFORMATION

ATTENTION:

Only qualified technicians with knowledge about overload protection relay and associated machinery should do the installation, starting up, and maintenance of the system. Failure to comply may result in equipment damage and/or personal injury.

CONSIDERATION REGARDING EMC

NOTICE:

This product has been designed for industrial environments. Use of this product in residential enviroments may cause unwanted electromagnetic disturbances in which case the user may be required to take adequate mitigation measures. Failure to comply may result in equipment damage and/or personal injury.

Multi-Function Timer

- 13 Functions
- 10 Time Ranges
- Front knobs for Time Range, Time Scale \& Mode Setting
- Slim, Space Saving Design
- DIN Rail Mount

DIMENSIONS (MILLIMETERS)

SPECIFICATIONS

ACCURACY	Setting: $\pm 5 \%$ of F.S.
	Repeat: $\pm 0.5 \%$ (F.S. = Full Scale)
RESET	Reset time < 100 msec
OUTPUT CONTACT	SPDT (1 C/0)
CONTACT RATING	N/0:5A@ 250V AC N/C:3A @ 250V AC
MODES	On delay (A) Interval (B) Cyclic equal OFF first (C) Cyclic equal ON first (Ci) Pulse output, 500 ms fixed (D) Delay on break (E) Delay on make / Delay on break (F) Interval after break (H) Single shot (I) Retriggerable Single shot (J) Latching relay (K) Delay with Totalize (Ai) Interval with Totalize (Bi)
TIME RANGES	$0.1-1 \mathrm{sec}, 0.3-3 \mathrm{sec}, 1-10 \mathrm{sec}, 3-30 \mathrm{sec}$ $0.1-1 \mathrm{~min}, 0.3-3 \mathrm{~min}, 1-10 \mathrm{~min}, 3-30 \mathrm{~min}$ $0.1-1 \mathrm{hr}, 0.3-3 \mathrm{hr}$
SUPPLY VOLTAGE	$\begin{aligned} & \text { 20-240V AC, 12-240V DC } \\ & \text { AC: }(50 / 60 \mathrm{~Hz}) \end{aligned}$
POWER CONSUMPTION	43.2VA max
TEMPERATURE	Operating: 0 to $50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
	Storage: -20 to $75^{\circ} \mathrm{C}\left(-4\right.$ to $167^{\circ} \mathrm{F}$)
HUMIDITY (NON-CONDENS	$95 \% \mathrm{RH}$ NG)
WEIGHT	0.163 lbs .
PROTECTION LEVEL	IP40 for Casing IP20 for Temrinals

TERMINAL CONNECTIONS

ORDERING INFORMATION

PART NO.
SUPPLY VOLTAGE
20-240V AC/DC 12-240V DC

Single Mode Timer

- On Delay
- 10 Time Ranges
- Front knobs for Time Range \& Time Scale
- Slim, Space Saving Design
- DIN Rail Mount

DIMENSIONS (MILLIMETERS)

Symmetrical 35 mm Din Rail (EN50022) Mounting

TERMINAL CONNECTIONS

SPECIFICATIONS

ACCURACY	Setting: $\pm 5 \%$ of F.S.
	Repeat: $\pm 0.5 \%$ (F.S. $=$ Full Scale)
RESET	Reset time < 100 msec
OUTPUT CONTACT	SPDT (1 C/0)
CONTACT	N/0:5A @ 250V AC
RATING	N/C:3A @ 250V AC
MODES	On delay (A)
TIME RANGES	$0.1-1 \mathrm{sec}, 0.3-3 \mathrm{sec}, 1-10 \mathrm{sec}, 3-30 \mathrm{sec}$ $0.1-1 \mathrm{~min}, 0.3-3 \mathrm{~min}, 1-10 \mathrm{~min}, 3-30 \mathrm{~min}$ $0.1-1 \mathrm{hr}, 0.3-3 \mathrm{hr}$
SUPPLY	110V AC : (50 or 60 Hz)
POWER CONSUMPTION	4.0 VA
TEMPERATURE	Operating: 0 to $50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ Storage: -20 to $75^{\circ} \mathrm{C}\left(-4\right.$ to $167^{\circ} \mathrm{F}$)
HUMIDITY (NON-CONDENS	$95 \% \text { RH }$ NG)
WEIGHT	2.151 oz.
PROTECTION LEVEL	NEMA 12

TIMING DIAGRAM

ORDERING INFORMATION

PART NO.	SUPPLY VOLTAGE
175SO-110	110 V AC

SPECIFICATIONS

ACCURACY	Setting: $\pm 0.1 \%$ of set time of $\pm 50 \mathrm{mSec}$
	Repeat: $\pm 0.1 \%$
RESET	Reset time < 100 msec , Front Key, Interruption of Power
OUTPUT CONTACT	SPDT (1 C/0)
CONTACT RATING 8A @ 250V AC	
MODES	On delay (A) Interval (B) Asymmetrical cyclic OFF first (C) Asymmetrical cyclic ON first (D) Cyclic equal OFF first (E) Cyclic equal ON first (F) Pulse output (H) Delay on break (J) Delay on make/break (K) Interval after break (L) Single shot (P) Retriggerable Single shot (Q) Latching relay (R) Delay with Totalise (t) Interval with Totalise (U)
TIME RANGES	$\begin{aligned} & 0-99.9 \mathrm{sec} / \mathrm{min} / \mathrm{hr} \\ & 0-999 \mathrm{sec} / \mathrm{min} / \mathrm{hr} \\ & 0-9: 59 \mathrm{~min}: \mathrm{sec} \\ & 0-9: 59 \mathrm{hr}: \mathrm{min} \end{aligned}$
SUPPLY VOLTAGE	$\begin{aligned} & 20-240 \mathrm{~V} \text { AC/DC } \\ & \text { AC : }(50 / 60 \mathrm{~Hz}) \end{aligned}$
POWER CONSUMPTION	4 VA max
TEMPERATURE	Operating: 0 to $50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ Storage: -20 to $75^{\circ} \mathrm{C}\left(-4\right.$ to $\left.167^{\circ} \mathrm{F}\right)$
HUMIDITY (NON-CONDENS	$95 \% \mathrm{RH}$ NG)
WEIGHT	0.163 lbs .
PROTECTION LEVEL	IP40 for Casing IP20 for Terminals

Multi-Function Timer "With Display"

- 15 Functions
- 8 Time Ranges
- Front Key Pad Setting
- Universal supply voltage
- Slim, Space Saving Design
- DIN Rail Mount

DIMENSIONS

(MILLIMETERS)

TERMINAL CONNECTIONS

TIMING DIAGRAMS

Percentage Timer

SPECIFICATIONS

TIME RANGES	15, 30, 60 MIN
TIMING MODE	Continuous ON-OFF
RANGE SETTING	3\%-97\%, Also 100\%
	ON and OFF Points
SETTING ACCURACY	Within 2\% of Full Scale
REPEAT ACCURACY	Within 1% of Full Scale
OUTPUT	SPST, 20A, 1/2 HP 120 VAC
	SPST, 20A, 1 HP 240 VAC
MOTOR VOLTAGES	120 VAC 50/60 Hz., 240 VAC, $50 / 60 \mathrm{~Hz}$.
	(50 Hz . Units Will Be 1/6
	Slower Than Listed Speeds.)
TERMINATION	Rear Screw Terminals
MOUNTING	Front Panel
TEMPERATURE RATING	32° to $120^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
WEIGHT	1.4 lbs .

MODEL NUMBER

MODEL	CP	
TIME RANGE	15 minutes	15 M
	30 minutes	30 M
	60 minutes	60 M
VOLTAGE	120 VAC	A
	240 VAC	C

MODEL EXAMPLE:
CP-15M-A

- Precise Fool-proof Operating Mechanism
- Three Time Ranges from Which to Choose
- Eliminates All Engaging Cams and Latches
- Minimal Panel Space Needed

For continuous ON-OFF control of electrical circuits, the CP Series single circuit repeat cycle timer is a continuous cycling control where the ON or circuit closure time is dial adjusted for a percentage of the total time cycle.
APPLICATIONS: Control of pumps, blowers, filters, heating equipment, industrial ovens, laboratory equipment and wherever ON or OFF control is desired as a percentage of the primary fixed total time cycle.

DIMENSIONS

Easily the most rugged and dependable of industrial percentage timers, the ATC 304 incorporates heavy-duty contacts that are capable of switching loads as large as 4.6 KW directly.
LARGE CONTACTS: Self-cleaning silver contacts are $3 / 8$ inch in diameter, larger than in any other make of percentage timer. They easily provide 1,000,000 operations at the full rated load of 25 A (non plug-in models).
RUGGED AND TROUBLE-FREE: Every component of the 304 has been refined and improved over the years to provide dependable operation for at least $3,000,000$ cycles. Its classic simplicity of design makes it virtually trouble-free.
CONVENIENT ADJUSTMENT: Graduated in easily read 1% increments, the 304 provides continuous adjustment of on time between 5 and 95%. It also switches the load off continuously when the pointer is set below 3%; and on continuously, when the pointer is set above 98%.

SPECIFICATIONS

MODELS
Choice of three

POWER REQUIREMENTS 120 or $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz} ; 50 \mathrm{~mA}$ running current.

TERMINALS	4 screw terminals accessible at rear; wiring diagram on housing.

TEMPERATURE RATING 32° to $120^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
WEIGHT NET: $1 \mathrm{lb} ., 2 \mathrm{oz}$. SHIPPING: $1 \mathrm{lb} ., 7 \mathrm{oz}$.

Percentage Timer

OPERATION

The 304 is available in a choice of 15,30 and 60 -second time cycles (60 Hz). Its synchronous motor drives a cam which repeatedly closes the SPST load switch for a percentage of the time cycle, as set on the timer dial, and opens it for the remainder of the cycle.

When the dial pointer is set below 3\%, the load switch stays open for the full cycle; it remains closed when the pointer is set above 98%. An optional Hold switch also disconnects power to the timer motor when the pointer is set below 3%.

Series 304 timers operate continuously and do not reset on power interruption; when power is restored, they resume the interrupted cycle.
TYPICAL APPLICATIONS: Ideal for controlling wattage input to electrically heated equipment, the 304 non-plug-in models can pulse loads up to 4.6 KW directly through the SPST load switch; the plug-in models can switch up to 2.3 KW loads directly.
The 304 can be used with other types of electrical equipment to control the ratio of on time and off time in a fixed time cycle. In many types of ratio and cascade control systems, the 304 provides rate-of-rise set point drive control; special dial calibrations are available for this application.

MODEL NUMBER		304E
RANGE	15 SEC @ 60 Hertz	004
	(18 SEC @ 50 Hertz)	
	30 SEC @ 60 Hertz	006
	(36 SEC @ 50 Hertz)	
	60 SEC @ 60 Hertz	007
	(72 SEC @ 50 Hertz)	
	Special	000

VOLTAGE \& FREQUENCY

120 VAC	A
240 VAC	B
Special	K

DIAL CALIBRATION

Standard 0 to 100% Dial	00
Special	99

FEATURES

Standard plug-in timer	P
Standard non-plug-in timer	X
STANDARD	X
Special	K

MODEL NUMBER		304C
RANGE	15 SEC @ 60 Hertz	004
	(18 SEC @ 50 Hertz)	
	30 SEC @ 60 Hertz	006
	(36 SEC @ 50 Hertz)	
	60 SEC @ 60 Hertz	007
	(72 SEC @ 50 Hertz)	
	Special	000

VOLTAGE \& FREQUENCY

120 VAC	A
240 VAC	B
Special	K

DIAL CALIBRATION

Standard 0 to 100% Dial	00
Special	99

FEATURES

Metal Dial	X
STANDARD UNIT/NON-PLUG-IN	X
Special	K

304C NON-PLUG-IN

The 304G solid-state percentage timer comes standard in a 120 SEC range with 15 SEC, 30 SEC, 60 SEC user configurable ranges. Additionally, all second ranges can become minute ranges by changing jumper J11. The 304 G is easily panel mounted with 4 screws. It utilizes an integrated circuit technology for high accuracy timing.

CONTACTS: The relay contact is capable of switching 10 A to a resistive 120 VAC or 30 VDC load. It is capable of driving a $1 / 3 \mathrm{HP}$ load at 120 VAC.

CYCLE PROGRESS INDICATION: The 304G has a pilot light that is on solid during the relay off time. It blinks at a faster rate during the relay on time: once every 3.5 seconds during the first 10% of the cycle, twice during the second 10% and so on.
HIGH ACCURACY: The 304G's timing circuit is not a simple RC circuit. It utilizes the sophistication of a proprietary integrated circuit that includes counting technology along with a stable oscillator to provide repeatable time delays.

CONVENIENT ADJUSTMENT: Graduated in easily read 1% increments, the 304 G provides continuous adjustment of on time between 5 and 95%.

OPERATION

The 304 G comes standard in the 120 SEC range but is user configurable for the 15 SEC, 30 SEC or MIN., 60 SEC or MIN. by changing jumpers on the PC board. Each of these ranges can also be made minutes range by changing a jumper. Its solid-state circuitry repeatedly closes the SPST load switch for a percentage of the time cycle, as set on the timer dial, and opens it for the remainder of the cycle.
When the dial pointer is set below 3%, the load switch stays open for the full cycle; it remains closed when the pointer is set above 98%. This is true for all seconds ranges. Minute ranges have a 0.01% minimum.

If power is interrupted to the timer it will reset. When power is restored, the timer will begin a new time cycle.

MODEL NUMBER

MODEL NUMBER 304 G		Q	00	
RANGE				
Multi-range, Jumper Selectable* 15/30/60/120 SEC or MIN *Factory Set to 120 Sec Range	400			
15 SEC	004			
30 SEC	006			
60 SEC	007			
VOLTAGE \& FREQUENCY 120 VAC, $50 / 60 \mathrm{~Hz}$		Q		
DIAL CALIBRATION Standard			00	
FEATURES Standard				XX
Special				XK

Solid-State Percentage Timer

SPECIFICATIONS

MODEL	304G Non Plug-In
CONTACT RATINGS (non-inductive)	10 A at 120 VAC

TEMPERATURE RATING 32° to $120^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
SETTING ACCURACY $\pm 5 \%$ of range 5 to 95% on time, in 1% graduations.
FULL ON, FULL OFF FEATURE. When pointer is set below 3%, load switch contacts are open continuously; above 98%, contacts are closed continuously in all seconds ranges. Minute ranges have a 0.01% minimum.

RANGES	Standard 120 SEC range three configurable ranges of 15 SEC, 30 SEC, 60 SEC, $15 \mathrm{MIN}, 30 \mathrm{MIN}$, 60 MIN and 120 MIN.
LOAD RELAY	One SPST Relay 10 Amp @ 120 VAC
POWER REQUIREMENTS120V, 50/60 Hz; 50mA running current.	

TERMINALS	4 screw terminals accessible at rear; wiring diagram on housing
WEIGHT	Net: 5.6 oz.
SHIPPING:	1 lb.

REAR VIEW OF TIMER

CHART 1
*Range of Configuration

Range	JP12	JP13
15 SEC	ON	ON
30 SEC	ON	OFF
60 SEC	OFF	OFF
120 SEC	OFF	ON

*For same minute ranges, install JP11
Examples:

1. Jump JP13, No Jump JP11, JP12, make a 120 SEC range.
2. Jump JP11, No Jump JP12, JP13, make a 60 minute range.

USER CONFIGURATION

The operation of the new 304GX Percentage Timer is similar to the 304G with several noteworthy enhancements. The accuracy of the 304GX has been improved to 1% of range. With the Cycle Progress Memory feature, when power is removed and restored during the cycle, the 304GX will continue the cycle without resetting. The latching relay only changes state when the cycle reaches the set point or the end of the cycle.

CONTACTS: The relay contact is capable of switching 10 A to a resistive 120 VAC or 30 VDC load. It is capable of driving a $1 / 3 \mathrm{HP}$ load at 120 VAC.

CYCLE PROGRESS INDICATION: The 304GX has a pilot light that is on solid during the relay off time. It blinks at a faster rate during the relay on time: once every 3.2 seconds during the first 10% of the cycle, twice during the second 25% and so on.
HIGH ACCURACY: The 304GX's timing circuit is not a simple RC circuit. It utilizes the microprocessor that includes counting technology along with a stable crystal oscillator to provide repeatable time delays.
CONVENIENT ADJUSTMENT: Graduated in easily read 1% increments, the 304GX provides continuous adjustment of on time between 1 and 99%.

OPERATION

The 304GX comes standard in the 60 SEC range but is user configurable for the 15 SEC, 30 SEC, 120 SEC or MIN by jumpers from the PC board. Each of these ranges can also be made minutes range by a jumper. Its solid-state circuitry repeatedly closes the SPST load switch for a percentage of the time cycle, as set on the timer dial, and opens it for the remainder of the cycle.
When the dial pointer is set below 1%, the load switch stays open for the full cycle; it remains closed when the pointer is set above 99%. This is true for all seconds and minutes.
If power is interrupted, the 304 GX timer will not reset and the relay state will not change. When power is restored, the timer will continue the interrupted cycles.

MODEL NUMBER

MODEL NUMBER 304GX		Q	00	
RANGE				
Multi-range, Jumper Selectable* 15/30/60/120 SEC or MIN *Factory Set to 120 Sec Range	400			
15 SEC	004			
30 SEC	006			
60 SEC	007			
VOLTAGE \& FREQUENCY 120 VAC, $50 / 60 \mathrm{~Hz}$		Q		
DIAL CALIBRATION Standard			00	
FEATURES Standard				XX
Special				XK

Solid State Percentage Timer

SPECIFICATIONS

MODEL	304GX Non Plug-In
CONTACT RATINGS (non-inductive)	10 A at 120 VAC

TEMPERATURE RATING	32 to $120^{\circ} \mathrm{F}$ (0 to 50 C)
SETTING ACCURACY	$\pm 1 \%$ of range 1% to 99% on time, in 1% graduations.
	FULL ON, FULL OFF FEATURE. When pointer is set below 1%, load switch contacts are open continuously; above 99%, contacts are closed continuously in all seconds ranges. Minute ranges have a 0.01% minimum.
RANGES	Standard 120 SEC range three configurable ranges of 15 SEC, 30 SEC, 60 SEC, 15 MIN, 30 MIN, 60 MIN and 120 MIN .
LOAD RELAY	One SPST Relay 10 AMP @ 120 VAC
POWER REQUIREMENTS	$120 \mathrm{~V}, 50 / 60 \mathrm{~Hz} ; 50 \mathrm{~mA}$ running current
TERMINALS	4 screw terminals accessible at rear; wiring diagram on housing
WEIGHT	Net: 5.6 oz.
SHIPPING:	1 lb .

REAR VIEW OF TIMER

CHART 1 *Range of Configuration			
Range	J2	J3	
15 SEC	ON	ON	
30 SEC	ON	OFF	
60 SEC	OFF	OFF	
120 SEC	ON		
*For same minute ranges, jump J1			
Examples: 1. Jump J3, No Jump J1, J2 make a 120 2. Jump J1, No Jump J2, J3, make a 60			

Noted for its circuit flexibility, the $\mathbf{3 0 5}$ also provides the highest accuracy among analog timers. Available for either ON-Delay or OFFDelay operation.
The 305 provides delay, interval or pulse timing function for up to 7 load circuits through two instantaneous and two delayed switches. It features a plug-in design and cycle progress indication.

HIGHEST ACCURACY: Because of its exclusive infinite engagement clutch, the 305 has a repeat accuracy of 0.2%, highest of any timer in its class.

PLUG-IN AND DUST-TIGHT DESIGN: By virtue of its true plug-in design, the body of a 305 can be replaced in seconds without disturbing the housing or disconnecting the wiring. Its gasketed dial assembly forms a dust-tight seal against the housing, whether panel or surface-mounted.

FASTEST RESET: All 305 timers reset to a full-scale setting within 0.1 second, proportionately faster for shorter settings.
CIRCUIT FLEXIBILITY: All the contacts of its two instantaneous and two delayed load switches are externally accessible at a 14 point terminal block.

LONGEST LIFE: With an average mechanical life expectancy of over $5,000,000$ operations before the first failure, the 305 is the leader in its class.

PILOT LIGHT: A built-in pilot light indicates that the timer is running.

OPERATION

The 305 is a synchronous motor-driven timer with an electrically-operated clutch equipped either for ON-Delay or OFF-Delay operation.
ON-DELAY: When power is applied (start signal on), the clutch solenoid is energized. Two things happen immediately and simultaneously, the instantaneous switches transfer from one set of contacts to the other, and the motor begins to drive the cycle progress pointer toward zero.
At the end of the timed period, the pointer trips one of the delayed switches, a brief time later (about $1 / 2 \%$ of full scale), the other delayed switch is tripped, stopping the timer motor but leaving the clutch engaged. The timer does not reset until power to the clutch is removed.

OFF-DELAY: Timing starts when power is removed (start signal off), from the spring-loaded, normally engaged clutch. The timer is reset when power is restored to the clutch solenoid; simultaneously, the instantaneous contacts are tripped. Action of the delayed contacts is the same as with ON-Delay timers. A power outage stops the motor but does not reset the OFF-Delay 305E.

Motor-Driven Analog Reset Timer

${ }^{*} D_{2}$ trips approximately $1 / 2 \%$ of range after end of cycle.
** Assumes a sustained closed start signal (i.e. longer than the dial set time).

SWITCH	CONTACTS	OFF DELAY			
		Timing Sequence**			
		Before Start	During Cycle	*	End of Cycle *
Instantaneous	14-9/6-8				
	14-10/6-7				
Delayed (D_{2})	11-12				
	11-13				
Delayed (D_{1})	4-5				
	4-3				
${ }^{*} D_{2}$ trips approximately $1 / 2 \%$ to 5% of range after end of cycle. ** Assumes a sustained closed start signal (i.e. longer than the dial set time).					

WIRING
AC WIRING

TERMINAL WIRING

SPECIFICATIONS

MODELS	ON-Delay
OFF-Delay	
RANGES (AC)	13 standard ranges, from 6 SEC to 60 HRS at

REPEAT ACCURACY AC MODELS: -0.2% of full scale (For ranges of 60 SEC or less, it may be necessary to run timer motor before start to achieve related accuracy)

RESET TIME	0.1 SEC, full scale
MIN. SETTING	$1 / 60$ th of range (all models except 0.3 SEC for 6 SEC model)

DIAL DIVISIONS 6 SEC, 60 SEC, 120 SEC, 240 SEC, $60 \mathrm{MIN}, 240 \mathrm{MIN}, 6 \mathrm{HR}$, and $60 \mathrm{HR}=120$ Dial Divisions 30 SEC, 15 MIN, $30 \mathrm{MIN}, 15$ HR., and $30 \mathrm{HR}=150$ Dial Divisions

LIFE EXPECTANCY MECHANICAL: over 5,000,000 operations CONTACTS: 3,000,000 operations under resistive or inductive load of 1 A

TIMING MOTOR	Synchronous, permanently lubricated
TIMING	Single cycle interval or delay
LOAD SWITCHES	INSTANTANEOUS: two, each SPDT; self cleaning,
	heavy-duty silver contacts.
	DELAYED:
	two, each SPDT; precision type, silver contacts
CONTACT RATING(non-inductive): 10 amps, 120 VAC	

PILOT LIGHT	Wired in parallel with motor.
TERMINALS	14 screw terminals accessible at rear; integral wiring diagram on timer housing.
HOUSING	Plug-in design; completely gasketed, dust-tight when surface or panel-mounted
POWER	AC MODELS: $120,60 \mathrm{~Hz}$ (all ranges), REQUIREMENTS $(-10 \%,-10 \%)$

REQUIREMENTS	AC MODELS: running current $0.128 \mathrm{~A}(115 \mathrm{VAC})$ inrush current $0.628 \mathrm{~A}(115 \mathrm{VAC})$
TEMPERATURE RATING	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
WEIGHT	NET: $2 \mathrm{lb} ., 6$ oz. SHIPPING: $2 \mathrm{lb} ., 12 \mathrm{oz}$.
MOUNTING	STANDARD: Hardware is provided to mount timer so that it is dust-tight from front of panel.
ACCESSORIES	OPTIONAL: Surface mounting with rear-facing terminals. (See Accessories)

TYPICAL INSTALLATIONS

SUSTAINED START (ON DELAY)

MOMENTARY START (ON DELAY)

OFF DELAY

Motor-Driven Cycle Progress Timer

SPECIFICATIONS

MODEL	Choice of ON-Delay or OFF-Delay operation (not field-convertible)
RANGES	11 standard ranges, from 5 SEC to 5 HRS at $60 \mathrm{~Hz}(6 \mathrm{SEC}$ to 6 HRS at 50 Hz)
REPEAT ACCURACY	- 2% of dial range.
RESET TIME	150 ms .
MIN. SETTING	5\% of dial range.
LIFE	MECHANICAL: 2,500,000 cycles (average)
EXPECTANCY	CONTACTS: 2,500,000 operations under resistive or inductive load of 1 A
TIMING MODES	SINGLE CYCLE: interval, delay or pulse.
LOAD	INSTANTANEOUS: one, SPDT, precision type.
SWITCHES	DELAYED: two, SPDT, precision type.
	CONTACT RATINGS (non-inductive):
	10 A at 120 VAC
	5 A at 240 V A C

TERMINALS 11-point terminal block on side of housing; all terminals accept .250" push-on connectors. Terminals 1, 2, 4, 9 and 11 are split connectors for use with either one .250 or two .110" push-on connectors.

POWER REQUIREMENTS	120,50 or $60 \mathrm{~Hz} .(\pm 10 \%,-15 \%)$	
		$121 \mathrm{~mA}(14.5 \mathrm{VA})$ Running Current 120 V
	Inrush Current	$157 \mathrm{~mA}(18.9 \mathrm{VA})$ at 120 V

TEMPERATURE 32° to $120^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$ RATING

WEIGHT NET: 1 lb .8 oz SHIPPING: 2 lbs.

NOTE: Some timing ranges are still available at 240VAC. Check with ATC.

A Dial-Adjustable TDR with cycle progress indication, the ATC 322 can also be used as a low-cost automatic reset timer for a wide range of interval, delay and pulse timing functions, in either ON -delay or OFF-delay operation.
COST EFFECTIVE VERSATILE TIMING FUNCTIONS: The 322 provides the versatile timing functions and features of much more expensive automatic reset timers.
INSTANTANEOUS AND DELAYED LOAD SWITCHES: Because the standard 322 includes an instantaneous switch as well as two delayed switches, it can be used in the On-Delay mode for interval and/or delayed control, with either a momentary or sustained start signal. All three switches are mounted on a sliding deck which facilitates replacement and maintenance.
SURFACE OR FLUSH MOUNT: The 322 is provided with hardware for surface mounting or, if desired, flush mounting through a single 15/16" OD cutout in a $1 / 8^{\prime \prime}$ panel.
CYCLE PROGRESS INDICATION: A pointer in the dial knob rotates during the cycle, continuously showing the time remaining until time-out.

OPERATION

The 322 is a synchronous motor-driven timer with an electricallyoperated clutch equipped either for On-Delay or Off-Delay operation.
ON-DELAY: When power is applied (start signal sustained on), the clutch engages, the motor begins to drive a cam toward its zero position, and the instantaneous switch transfers from one set of contacts to the other. At the end of the timed period, the cam trips one of the delayed switches, but the motor continues to run. A brief time later (about $2-1 / 2 \%$ to 5% of full scale), the cam trips the second delayed switch, stopping the motor but leaving the clutch engaged. The 322 resets when power is removed from the clutch.
OFF-DELAY: Timing begins when power is removed (start signal off) from the spring-loaded, normally-engaged clutch. The timer resets when power is restored to the clutch, thus disengaging it and transferring the instantaneous switch from one set of contacts to the other. Action of the delayed contacts is the same as with the On-Delay timer. A power outage stops the motor but does not reset the Off-Delay 322; the timer completes the interrupted cycle when power is restored.

WIRING

RANGE - $\mathbf{6 0 H Z} \mathbf{- 1 2 0 ~ V A C}$
5 SEC
10 SEC
20 SEC
40 SEC
60 SEC
150 SEC
5 MIN
10 MIN
40 MIN
60 MIN
5 HR

RANGE - 50 HZ - 120 VAC

6 SEC	101
12 SEC	116
24 SEC	117
48 SEC	118
72 SEC	073
180 SEC	119
6 MIN	029
12 MIN	047
48 MIN	058
72 MIN	061
6 HR	030
Special	000

SWITCH		ON DELAY			
		Timing Sequence**			
	CONTACTS	Before Start	During Cycle	$*$	End of Cycle *
Instantaneous	$4-3$				
	$4-5$				
Delayed $\left(D_{2}\right)$	$11-6$				
	$11-7$				
Delayed $\left(D_{1}\right)$	$9-10$				
	$9-8$				

${ }^{*} D_{2}$ trips approximately $2-1 / 2 \%$ of range after end of cycle.
${ }^{* *}$ Assumes a sustained closed start signal (i.e. longer than the dial set time).

SWITCH	CONTACTS	OFF DELAY		
		Timing Sequence**		
		Before Start	During Cycle	$\begin{array}{\|l\|l} * & \begin{array}{l} \text { End of } \\ \text { Cycle } \end{array} \end{array}$
Instantaneous	4-3			
	4-5			
Delayed (D_{2})	11-6			
	11-7			
Delayed (D_{1})	9-10			
	9-8			
* D_{2} trips approximately $2-1 / 2 \%$ to 5% of range after end of cycle. ** Assumes a sustained closed start signal (i.e. longer than the dial set time).				

MODEL NUMBER

MODEL NUMBER	322B				2	
RANGE		4	4			
VOLTAGE \& FREQUENCY -						
ARRANGEMENTS						
ON-DELAY (reset on power interruption)				1		
OFF-DELAY (non-reset on power interruption)				2		
Special				0		
SWITCH DIFFERENTIAL 2-1/2\%-5\% of dial range					2	
FEATURES STANDARD surface mounting unit, clutch contact						CS
SPECIAL						CK

DIMENSIONS
 (INCHES/MILLIMETERS)

SURFACE MOUNTING OF TIMER

OPERATION

The pointer is manually set to the desired time. At the instant the knob is turned from zero, the switch MS closes and load A is energized. After the set time has elapsed, the load is de-energized and the timer stops at zero. There is a terminal connection, (terminal 4) load B, for an end of cycle light and/or audible signal. A toggle switch can be furnished as added equipment which allows setting of the time before actuating the load. This provides a means of more accurate time settings. This toggle switch (time start and signal stop) will also turn off the end of cycle signal.
APPLICATIONS: Designed to control an electrical circuit for a set time upon operation of the manual setting knob which is directly connected to the switch operating cam. To assure positive setting action, this timer does not set through a clutch. Calibrated dial settings are available in ranges from 1 minute to 24 hours. Designed for control of any electrically operated equipment or operation, such as processing machinery, plastic molding, laundry and dry cleaning machinery, electric ovens and furnaces, photographic equipment, or wherever accurately timed control of electrical operation is critical.

DIMENSIONS (INCHES)

Series	H	W	D*	DWT
400	$4-1 / 2$	$2-7 / 8$	$2-1 / 4$	$1-1 / 4 \mathrm{lbs}$.

*Add 3/4" for knob.

WIRING

A compact and motor-driven cam timer, the 324 precisely controls one to twelve load circuits through easily-set screwdriver adjustable cams. Each timer provides a wide range of cycle times through a set of interchangeable gears.
EASY AND PRECISE CAM ADJUSTMENT: With ATC's unique split-cam design, each side of the cam is separately screwdriver-adjustable in either direction: either side determines the precise instant during the cycle when the switch will actuate, the other side determines how long the switch will remain actuated. Adjustments are easy and precise: $1 / 4$ turn of the adjusting screw equals 0.5% of cycle time. A setting disc, calibrated in 1% increments, facilitates program set-up and indicates cycle progress.

ONE TO TWELVE PRECISION SWITCHES: Whether used as a time or sequence programmer, the 324 can be ordered with any number of camoperated switches from one to twelve. Each SPDT precision switch is rated at $10 \mathrm{amps}, 120 \mathrm{VAC}$ and is $1 / 3 \mathrm{hp}$ rated at 120 or 240 VAC .
WIDE RANGE OF CYCLE TIMES: The 324 is available with a variety of synchronous motors. See charts for available timing ranges. Each motor provides an adjustable range of cycle times, with a ratio of over 2.5:1, through a set of interchangeable gears. Changing gears is a simple operation that takes only a few minutes.
ACCURACY: The repeat accuracy and setting accuracy of the 324 are both within $\pm 0.25 \%$. Follower fingers precisely track the contour of the cams, accurately operating the precision switches with quick-break action.
SEQUENCE CONTROL: The 324 can be ordered without a motor and with a 1 inch long shaft extension on either or both ends, for use as a rotary cam limit switch.

SPECIFICATIONS

CYCLE TIMES	Choice of ON-Delay or OFF-Delay operation (not field-convertible). Choose from a variety of interchangeable motors and gears. See chart for available timing ranges.	LOAD SWITCHES	TYPE: Precision switches; one for each cam	
			CONTACT ACTION: SPDT(Form C)	
			CONTACT RATING:	10 A at 120 VAC (non-inductive). $1 / 3 \mathrm{HP}$ at $125 / 250 \mathrm{VAC}$
			MINIMUM CONTACT 1% of cycle time ACTUATION TIME:	
REPEAT ACCURACY $\pm 0.25 \%$ of cycle time				
SETTING ACCURACY $\pm 0.25 \%$ of cycle time.		DRIVE MOTORS	$\frac{\text { SPEED: }}{\text { TYPE: }}$	choice of 12
FRAME SIZES	3, 6, 9 and 12 cam frame sizes are provided			Synchronous; permanently lubricated; integral slip clutch for manual advance; anti-backup to prevent damage to switches
CAMS	NUMBER: 1 to 12 (or multiples up to 12 , by combining timer assemblies); cams			
	CUT: \quad may be factory-set.		VOLTAGE:	120 VAC, 50 or 60 cycles; 240 VAC, 50 or 60 cycles.
	(standard cams allow contact closure adjustment of 1 to 45% or 55 to 99%,		POWERCONSUMPTION:	
	50% cut cams allow contact closure adjustment of 12 to 52% or 48 to		DUAL DRIVE:	two motors may be used, special applications
	88%; custom cams available with 2 or 4 or cuts.		TORQUE-SPEED CAPABILITIES:	At cycle times of 30 SEC or longer, the 324 can drive and switch 12 contacts simultaneously;
	CONSTRUCTION:			
	Two-inch diameter split type; made of Delrin			below 30 SEC, the motor may be limited in its ability to drive or
LIFE EXPECTANCY	MECHANICAL: over 10,000,000 operations			switch a number of contacts simultaneously.
	CONTACTS: over $1,000,000$ operations at less than 1 amp	TEMPERATURE RATING 32 to		$0^{\circ} \mathrm{F}\left(0\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
		WEIGHT	NET: from 1-1/2 lbs. for the 3 cam unit up to $3-1 / 2 \mathrm{lbs}$. for the 12 cam unit	
		ENCLOSURES	NEMA 12 molded maximum of 3 ca	ase for one model 324 with . (See Accessories) (Optional)

(not field-convertible).
Choose from a variety of interchangeable otors and gears.
chart for available timing ranges.

LIFE EXPECTANCY MECHANICAL: over $10,000,000$ operations CONTACTS: over 1,000,000 operations at less than 1 amp

MODEL NUMBER	
MODEL NUMBER	324 C
NUMBER OF SWITCHES	
1 Switch, 3 Cams	01
2 Switches, 3 Cams	02
3 Switches, 3 Cams	03
4 Switches, 6 Cams	04
5 Switches, 6 Cams	05
6 Switches, 6 Cams	06
7 Switches, 9 Cams	07
8 Switches, 9 Cams	08
9 Switches, 9 Cams	09
10 Switches, 12 Cams	10
11 Switches, 12 Cams	11
12 Switches, 12 Cams	12
CYCLE TIME MOTOR SPEED	
No Motor	0
5 rpm	A
150 rph	B
15 rph	E
5 rph	F
2.5 rph	G
1 rph	H
1/6 rph	L
CYCLE TIME MOTOR PINION	
No Motor	0
24 Teeth (300-495-01-00)	1
30 Teeth (300-495-02-00)	2
40 Teeth (300-495-03-00)	3
CYCLE TIME CAM SHAFT GEAR	
No Motor	0
30 Teeth (300-495-11-00)	A
36 Teeth (300-495-12-00)	B
40 Teeth (300-495-13-00)	C
45 Teeth (300-495-14-00)	D
50 Teeth (300-495-17-00)	E
55 Teeth (300-495-15-00)	F
60 Teeth (300-495-16-00)	G
OPERATION	
Repeat Cycle/Stop Cycle Dynamic Brake ${ }^{1}$	R
Eternal Drive by user, no motor	E
Special	K

MOTORS

1 Motor	1
2 motors	2
No motor	3
Special	0

VOLTAGE \& FREQUENCY

$120 / 60$	A
$240 / 60^{*}$	B
$120 / 50$	C
$240 / 50^{*}$	D
No motor	X

OPTIONS

None	01
1/4" dia. x 1 " long shaft extension right end (Units with one or no motor)	02
1/4" dia. x $1^{\prime \prime}$ long shaft extension left end (Units with one or no motor)	03
$1 / 4$ " dia. x 1 " long shaft extension both ends (On motorless units only)	04
Special	00

FEATURES

Standard (other than cam settings) (Blades)	X
Special	K

NOTES

CAMS
Factory setting cams to 0.25% tolerance, 50% cams allow 12 to 52% or 48 to 88% adjustment of switch actuation. 2,3 , or 4 cuts equally spaced. Have limited adjustability. (Does not include 50% cams with multiple cuts) Multiple cuts, unequally spaced. Multiple cuts over 4. Specially cut or specially molded cams.

CONTACT SWITCH

Switch with Bracket
324-260-82-00
${ }^{1}$ For Stop Cycle, or Brake operation, specify a 324 with one more switch than you need for your load circuits. (Do not exceed 12 switches tota!!) You interwire this switch to the motor according to the installation instruction for the unit.
${ }^{2}$ Be sure to specify shaft extension under OPTIONS
For prices and further information, consult factory.

TIME CYCLE ORDERING CODES

Select Time Cycle from table; if it is available with more than one motor and gearing combination, pick the combination which would best accommodate potential future speed changes. 3 Digit Speed Code identifies motor.

[^0]

 of uọ̣е

 below. Pick the vertical column
that corresponds to the total numnumber of load contacts simultaThe ability of the $324 C$ to trip a
number of load contacts simulta-

ω	8
$\stackrel{\circ}{\circ}$	$\stackrel{\rightharpoonup}{\infty}$

可

古

1/16 DIN ON Delay/Interval Timer

- ON Delay / Interval Mode of Operation
- 12 Timing Ranges
- Universal Supply Voltage
- LED Status Indicator Power ON, Relay ON
- Compact Size
- Face Plate IP40

SPECIFICATIONS
OUTPUT CONTACT DPDT

DELAY MODES	ON Delay / Interval
TIME RANGES	$1 / 3 / 10 / 30$ SEC / MIN / HR
RELAY RATING Model S2X Model S5TX	10A @ $230 \mathrm{VAC/24} \mathrm{VDC} resistive$, $5 \mathrm{EA} 230 \mathrm{VAC} / 24 \mathrm{VDC}$, resistive
ACCURACY	Setting: $\pm 5 \%$ of full scale. Repeat: $\pm 0.5 \%$ or 50 msec (whichever is greater).

RESET	On interruption of power.
OPERATING	32° to $122^{\circ} \mathrm{F}$
TEMPERATURE	$\left(0^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
STORAGE	-4° to $167^{\circ} \mathrm{F}$
TEMPERATURE	$\left(-20^{\circ}\right.$ to $\left.75^{\circ} \mathrm{C}\right)$
$000-825-90-00$	Back Connections Socket

LOAD CONNECTIONS

8-PIN PLUG-IN TYPE

TERMINAL TYPE

ON DELAY / TIMING MODES:

The 405AR has a selectable ON-Delay or Interval Mode of operation. The unit has a DPDT 10A contact output. When in the On-Delay mode, the contacts transfer at time out. When in the Interval mode, the contacts transfer when power is applied and released at time out.

1/16 DIN HOUSING:

The $48 \mathrm{~mm}^{2}$ housing is compact and IP40 rated front cover. The 405AR100S2X is mounted in an 8-pin round socket (PF083A or OT08). The 405AR100S5TX is a terminal unit (no socket required). The 405AR can also be panel mounted.

The MODE/Range select dip switches are located on the front under a clear cover.

UNIVERSAL POWER:

The 405AR is universal powered and can be powered by 20 to 240 VAC or 12 to 240 VDC, greatly reducing inventory management of replacement units.

DIMENSIONS

(MILLIMETERS)

OPERATING MODE

MODE AND RANGE SELECTION

Dip switch settings for time range selection				
RANGE	sw 1	sw 2	sw 3	sw 4
1 SEC	OFF	OFF	OFF	OFF
3 SEC	OfF	ON	OFF	OFF
10 SEC	ON	OFF	OFF	OFF
30 SEC	ON	ON	OFF	OFF
1 MIN	OFF	OFF	OFF	ON
3 MIN	OfF	ON	OFF	ON
10 MIN	ON	OFF	OFF	ON
30 MIN	ON	ON	OFF	ON
1 HR	OFF	OFF	ON	OFF/ON
3 HR	OFF	ON	ON	OFF/ON
10 HR	ON	OFF	ON	OFF/ON
30 HR	ON	ON	ON	OFF/ON
Dip switch settings for mode selection				
MODE	sw			
ON DELAY	OFF			
InTERVAL	ON			
S witch setting example:				
AN $\underset{\text { Sw1 Sw2 Sw3 Sw4 Mode }}{\square \square \square \square \square}$Range: 30 sec Mode $: O n$ dela				

ORDERING CODE

MODEL NUMBER	DESCRIPTION
405AR100S2X	8-PIN socket with 10 amp relay
405AR100S5TX	Terminal with 5 amp relay

INSTANTANEOUS \& DELAYED: A version of the 405 is available with one set of SPDT instantaneous contacts and one set of SPDT delayed contacts. The instantaneous contacts transfer as soon as the timer is powered. The delayed contacts transfer at time out. This contact arrangement can be used to replace many conventional timers.

ON DELAY/INTERVAL TIMING MODE VERSION: A version of the 405 is available with selectable ON-delay or Interval timing modes. This version has a set of DPDT output contacts. When in the ON-delay mode, the contacts transfer at time out. When in the Interval mode, the contacts transfer when power is applied and release at time out.

UNIVERSAL POWER: All 405 timers can be powered using 24-240 VAC or 24 VDC power, greatly simplifying ordering and inventory management of replacement units.
1/16 DIN HOUSING: The $48 \mathrm{~mm}^{2}$ (1/16 DIN) housing is compact design. The 405 is mounted in an 8 -pin round (octal) socket. With an optional mounting clip, the 405 can be panel mounted.
The Dial on the 405 is extra large and is easy to read. When fractional ranges are selected, decimal points are clearly indicated.

The Mode select and Range select switches are located on the side of the unit, so that when panel mounted, these switches are not accessible to the operator. This tamper proof feature prevents unauthorized or hazardous changes to the timing mode and range from being made.

CYCLE PROGRESS INDICATION: The 405 LED indicator provides a unique and effective method of cycle progress indication. Off before timing, the LED blinks at an ever increasing rate as the cycle progresses: once every $3-1 / 2$ seconds during the first 10% of the cycle, twice during the second 10%, and so on. At time out, the LED pulses at a high rate. (In the $1,5,10$ and 50 second ranges, the LED is OFF before timing, steady ON during timing, and pulsing ON after time-out).
Timing begins when the start switch is closed. This starts an oscillator which runs at a frequency determined by the time setting. A fixed number of counts from the oscillator determines the end of the timing cycle. The time required to accomplish this depends upon the oscillator frequency. During timing, an LED located on the dial face blinks. For the first 10% of the cycle, LED repeatedly blinks once followed by a pause. For the second 10%, it blinks twice and so on indicating the cycle progress. The LED flashes rapidly and continuously after time out.

OPERATIONS

MODEL...F1X

The instantaneous contacts (3-1-4) transfer immediately after the start switch is closed. The delayed contacts (6-8-5) transfer after the timing cycle indicated on the front dial setting. Both contacts remain transferred until the unit is reset.

MODEL...F2X

ON DELAY MODE: At time out, the DPDT relay transfers its contacts. These contacts remain transferred until the start switch is opened or power is removed by some other means. The 405 then resets and is ready for another cycle.

INTERVAL MODE: When the start switch is closed, the DPDT relay transfers its contacts. The contacts remain transferred until time out. The timer will not start again until the start switch is opened or power is removed by some other means. The 405 then resets and is ready for another cycle.

Timer with Instantaneous Relay

- On-Delay version with instantaneous relay
- Selectable On-Delay/Interval Timing Mode version
- Output Contacts rated 10A 120/240 VAC and 30 VDC
- Six Timing Ranges in a single unit
- Timing Ranges:

1 and 10 SEC, MIN, and HRS
5 and 50 SEC, MIN, and HRS

- Universal Power Supply: 24-240 VAC and 24 VDC
- $48 \mathrm{~mm}^{2}$ DIN Standard housing
- Large and easy to read dial shows decimal points
- Round (octal) socket mount or mount in panel cutout
- Range and Mode select are tamper proof when panel mounted
- Unique flashing cycle progress indication

WIRING
WIRING
TERMINAL WIRING

MODEL NUMBER

ACCESSORIES

8-Pin surface/DIN rail socket	$000-825-85-00$
Hold down for above socket (Requires 2 per unit)	$407-025-13-00$
Panel mounting bracket	$405-320-02-00$
Plug-in socket kit (8-pin)	$319-261-45-00$
8-Pin panel socket w/rear facing terminals	$000-825-90-00$

SPECIFICATIONS

MODELS 405C100F1X ON-Delay w/instantaneous \& delayed relays (1 or 10 SEC/MIN/HRS)
405C500F1X ON-Delay w/instantaneous \& delayed relays (5 or 50 SEC/MIN/HRS)
405C100F2X ON-Delay/Interval with (1) DPDT relay (1 or 10 SEC/MIN/HRS)
405C500F2X ON-Delay/Interval with (1) DPDT relay (5 or 50 SEC/MIN/HRS)
Both models available in 6 ranges from 1 SEC to 10 HRS or 5 SEC to 50 HRS

CONTACT Rated 10 AMPS resistive at 30 VDC or 250 VAC (or less)
RATING 1/8 HP @120 VAC
1/4 HP @ 240 VAC
240 VA @ 240 VAC
LIFE: 10 million operation with no load 100,000
operations with: 10 AMPS at 30 VDC (or less) or 10 AMPS at 250 VAC (or less)
CONTACT Silver Nickel

MATERIAL
TEMPERATURE 0 to $122^{\circ} \mathrm{F}$ (-18 C to 50 C) RATING

MOUNTING__ Plug-in octal base; mounts in any position w/ retaining clip
Options: Surface mounting socket DIN rail mounting socket Panel-mounting adapter kit Plug-on socket kit

POWER

REQUIREMENTS

Universal power supply - reverse polarity protected Unit will accept power from 24 to 240 VAC, 50 or $60 \mathrm{~Hz},(+10 \%,-20 \%)$ AC Inrush-1.5 Amps Power required -1.2 watts
DC Maximum ripple @100 Hz-5\% Current required - 50 mA Power required - 1.2 watts F option Peak inrush current = 2 AMPS @ 24 VDC N option Peak inrush current $=150 \mathrm{~mA}$ @ 24 VDC

DIMENSIONS (INCHES/MILLIMETERS)

TYPICAL CIRCUITS

```
405C... F1X
```

405C... F2X

1/16 DIN Multi-Mode Timer

- Selectable ON-Delay/OFF-Delay/Interval Timing Modes
- Separate Start Input
- Output Contacts rated 10A at 120/240 VAC and 30 VDC
- Six Timing Ranges in a single unit
- 1 and 10 SEC, MIN, and HRS 5 and 50 SEC, MIN, and HRS
- Universal Power Supply; 24-240 VAC and 24 VDC
- 48mm ${ }^{2}$ DIN Standard housing
- Large and easy to read dial shows decimal points
- Round (octal) socket mount or mount in panel cutout
- Range and Mode select are tamper proof when panel mounted
- Unique flashing cycle progress indication

The 407C Directly Replaces 407B and 407A

Special note for Off-Delay operation: When operated from AC, the start switch must be of a dry contact type such as a relay contact or mechanical switch. When operated from $D C$, the start switch can be a dry contact type such as a relay contact or mechanical switch. In addition, a solid-state device may be used as long as its saturation voltage drop is less than 1.5 VDC at 50 mA .

MULTIPLE TIMING MODES: The 407 is available with selectable OnDelay, Off-Delay or Interval timing modes. These timing modes energize a set of DPDT output contacts. When in the On-Delay mode, the 407 begins timing when the timer is energized. In On-Delay mode, the contacts transfer at time out. When in the Off-Delay mode, the 407 begins timing when the Start input is de-energized. In Off-Delay mode, the contacts transfer at time out. When in the Interval mode, the contacts transfer when the timer is energized. In Interval mode, the contacts release at time out.

UNIVERSAL POWER SUPPLY: All 407 timers can be powered using 24-240 VAC or 24 VDC power, greatly simplifying ordering and inventory management of replacement units.

HIGH ACCURACY: The 407's timing circuit is not a simple RC circuit. It utilizes the sophlstication of a proprietary integrated circuit that includes counting technology along with a stable oscillator to provide repeatable time delays.

1/16 DIN HOUSING: The $48 \mathrm{~mm}^{2}$ (1/16 DIN) housing is compact. The 407 is mounted in an 11-pin round socket. With an optional mounting clip, the 407 can be panel mounted.
The Dial on the 407 is extra large and is easy to read. When fractional ranges are selected, decimal points are clearly indicated.

The Mode SELECT AND RANGE select switches are located on the side of the unit, so that when panel mounted, these switches are not accessible to the operator. This tamper proof feature prevents unauthorized or hazardous changes to the timing mode and range from being made.

CYCLE PROGRESS INDICATION: The 407 LED indicator provides a unique and effective method of cycle progress indication. Off before timing, the LED blinks at an ever increasing rate as the cycle progresses; once every $3-1 / 2$ seconds during the first 10% of the cycle, twice during the second 10%, and so on. At time out, the LED pulses at a high rate. (In the $1,5,10$ and 50 second ranges, the LED is Off before timing, steady On during timing, and pulsing On after time-out).

OPERATIONS

Timing begins when the start switch is closed (ON-delay and INT modes) or opened (OFF-delay mode). This starts an oscillator which runs at a frequency determined by the time setting. A fixed number of counts from the oscillator determines the end of the timing cycle. The time required to accomplish this depends upon the oscillator frequency. During timing, An LED located on the dial face blinks. For the first 10\% of the cycle, the LED repeatedly blinks once followed by a pause. For the second 10%, it blinks twice and so on indicating he cycle progress. The LED flashes rapidly and continuously after time out.

ON-DELAY MODE: At time out, the DPDT relay transfers its contacts. These contacts remain transferred until the start switch is opened or power is removed by some other means.
INTERVAL MODE: When the start switch is closed, the DPDT relay transfers its contacts. The contacts remain transferred until time out. The timer will not start again until the start switch is opened or power is removed by some other means. The 407B then resets and is ready for another cycle.
OFF-DELAY MODE: Power must be applied to the timer before and during timing (terminals \#10 \& 2). Upon closure of the start switch, the DPDT relay transfers its contacts. The timing begins when the start switch is opened. The relay remains energized during timing. At time out, the relay de-energizes.

SPECIFICATIONS

SPECIFICATIONS (CONTINUED)

MINIMUM SETTING	2% of range, with the exception of 50 mSEC on the 1 second range
SETTING ACCURACY $\pm 5 \%$ of range	
RESET	a 0 to 20 mSEC power interruption: guaranteed no reset.
	b 20 to 65 mSEC ; it may reset (40 mSEC typical reset).
	c Over 65 mSEC guaranteed to reset.
	The TDR will reset properly and not start timing when subjected to an open start switch leakage of 1.5 mA or less. (Prox switch \& Triac drive applications)
TERMINAL \#6	DC Minimum Current Rating - 50m
(START SWITCH	Maximum saturated voltage drop -
REQUIREMENTS	1.5 VDC
OFF-DELAY)	AC Minimum Current Rating-1.5 A
WEIGHT	5 oz . 140 g)

MODEL NUMBER

MODEL NUMBER	407C				

ACCESSORIES

11-Pin surface/DIN rail socket	$000-825-86-00$
Hold down for above socket (Requires 2 per unit)	$405-025-07-00$
Panel mounting bracket	$405-320-02-00$
Plug-in socket kit (11-pin)	$314-260-07-00$

WIRING

MODEL 407C...F3X

TERMINAL WIRING
CAUTION: Do NOT connect terminal 6 to L 1 (AC Hot or DC+).
Damage to unit will result.
Terminal 6 is a dry contact only

DIMENSIONS (INCHES/MLLLIMETERS)

PANEL MOUNTING (UP TO .188 THICK)

TYPICAL CIRCUITS

ON-DELAY (MODE SWITCH IN ON-DELAY POSITION)

INTERVAL (MODE SWITCH IN INTERVAL POSITION)
OFF-DELAY (MODE SWITCH IN OFF-DELAY POSITION)

PUSH BUTTON START/INTERNAL: The 409 has a Push Button built into its front dial. When pressed, the timer starts and provides an interval time delay. The 409 has a set of DPDT output contacts. When the Push Button is pressed with power applied, the contacts immediately transfer. After the timer has timed out, the contacts release. Unit timing will reset with power loss.

UNIVERSAL POWER SUPPLY: All 409 timers can be powered using 24-240 VAC or 24 VDC power, greatly simplifying ordering and inventory management of replacement units.

HIGH ACCURACY: The 409's timing circuit is not a simple RC circuit. It utilizes the sophistication of a proprietary integrated circuit that includes counting technology along with a stable oscillator to provide repeatable time delays.
1/16 DIN HOUSING: The $48 \mathrm{~mm}^{2}$ ($1 / 16$ DIN) housing is compact. The 409 is mounted in an 8 -pin round (octal) socket. With an optional mounting clip, the 409 can be panel mounted.

The dial on the 409 is extra large and is easy to read. When fractional ranges are selected, decimal points are clearly indicated.

The Range Select Switch is located on the side of the unit, so that when panel mounted, this switch is not accessible to the operator. This tamper proof feature prevents unauthorized or hazardous changes to the timing range from being made.

OPERATIONS

Timing begins when the front green push button is pressed. This energizes the DPDT relay and starts an oscillator which runs at a frequency determined by the time setting. A fixed number of counts from the oscillator determines the end of the timing cycle.
The LED indicates the status of the relay output. It comes on when the green push button is pressed and remains on steady during the cycle. The LED turns off after the cycle is completed and the contacts released.

MODEL NUMBER

MODEL NUMBER	409B			2	
RANGE Six dial-selected ranges (1 or 10 SEC/MIN/HRS)	100				
Six dial-selected ranges					
(5 or 50 SEC/MIN/HRS)	500				
VOLTAGE \& FREQUENCY					
12 VDC					
24 to 240 VAC (50/60 Hz) and 24 VDC	F				
ARRANGEMENT 8-Pin, Push Button Start, Interval Operation		2			

FEATURES

Standard	X
Special	K

ACCESSORIES

8-Pin surface/DIN rail socket	$000-825-85-00$
Hold down for above socket (Requires two per unit)	$407-025-13-00$
Panel mounting bracket	$405-320-02-00$
Plug-in socket kit (8-pin)	$319-261-45-00$
8-Pin panel socket with rear facing terminals	$000-825-90-00$

1/16 DIN Push-Button Timer

- Push Button Start, Interval Timing Mode
- Push Button Integral to front dial
- Output Contacts rated 10A at 120/240 VAC and 30 VDC
- Six Timing Ranges in a single unit:

1 and 10 SEC, MIN, and HRS
5 and 50 SEC, MIN, and HRS

- Universal Power Supply: 24-240 VAC and 24 VDC
- $48 \mathrm{~mm}^{2}$ DIN Standard housing
- Large and easy to read dial shows decimal points
- Round (octal) socket mount or mount in panel cutout
- Range and Mode select are tamper proof when panel-mounted

DIMENSIONS (INCHES/MILLIMETERS)

WIRING

MODEL 409B...F2X

TYPICAL CIRCUITS

409B...F2X

SPECIFICATIONS

MODELS	409B100F2X Push Button Start, Interval Timing with (1) DPDT relay (1 or 10 SEC/MIN/HRS)	
	409B500F2X	Push Button Start, Interval Timing with (1)DPDT relay (5 or 50 SEC/MIN/HRS)
	Both models 1 SEC to 10	vailable in 6 ranges from RS or 5 SEC to 50 HRS
CONTACT RATING	Rated 10 AMPS resistive at 30 VDC or 250 VAC (or less) 1/8 HP @ 120 VAC 1/4 HP @ 240 VAC 240 VA @ 240 VAC LIFE:10 million operation with no load 100,000 operations with: 10 AMPS at 30 VDC (or less) or 10 AMPS at 250 VAC (or less)	
CONTACT MATERIAL	Silver Nickel	
TEMPERATURE RATING	0° to $122^{\circ} \mathrm{F}\left(-18^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$	
MOUNTING	Plug-in octal base; mounts in any position with retaining clips.	
	Options: Surface mounting socket DIN rail mounting socket Panel-mounting adapter kit Plug-on socket kit	

POWER Universal power supply - reverse polarity protected REQUIREMENTS Unit will accept power from 24 to 240 VAC, 50 or $60 \mathrm{~Hz},(+10 \%,-20 \%) 24$ VDC ($+20 \%,-20 \%$)
AC Inrush-1.5 Amps
Power required - 1.2 watts
DC Maximum ripple @ $100 \mathrm{~Hz}-5 \%$
Current required - 50mA
Power required - 1.2 watts

REPEAT ACCURACY	Varies as a function of temperature.
	Any voltage (constant temperature): $\pm 0.5 \%^{*}$
	Any voltage (0 F to 140 F): $\pm 2.0 \%^{*}$
	*Variation from average actual time.
MINIMUM SETTING	2% of range, with the exception of 50 mSEC on the 1 second range
SETTING ACCURACY	$\pm 5 \%$ of range
RESET	a 0 to 20 mSEC power interruption: guaranteed no reset
	b 20 to 65 mSEC ; it may reset (40 mSEC typical reset)
	c Over 65 mSEC guaranteed to reset
WEIGHT	5 oz (140 g)

The 417 True Off-Delay Timer is designed for the most rugged industrial environments. It offers exceptional electrical noise immunity, with excellent setting and repeat accuracy.
Each 417 can be powered from 24 VAC to 240 VAC and 24 VDC, greatly simplifying ordering and inventory management.

The $48 \mathrm{~mm}^{2}$ ($1 / 16 \mathrm{DIN}$) housing is compact. The 417 is mounted in an 8 -pin octal or 11-pin round socket. The 417 can be panel-mounted with an optional mounting clip.

A large time-setting knob is provided for easy adjustment by operator.
The range select switch is located on the side of the unit; therefore, once panel-mounted, the switch is not accessible to the operator. This tamper-proof feature prevents unauthorized or hazardous changes to the timing range.

The 417's high intensity LED turns on when power is applied to the timer and turns off during timing.

SPECIFICATIONS

MODELS	Choice of eight multi-range units. Each model has three timing ranges.
RANGE	Model 417B100 (10 SEC, 1 MIN, 10 MIN)
	Model 417B500 (5 SEC, 0.5 MIN, 5 MIN)
CONTACT RATING	10 AMPS (Resistive @ 250 VAC) 1/6 HP @ 120 VAC
TEMPERATURE RATING	0° to $104^{\circ} \mathrm{F}\left(-18^{\circ}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$
NOISE IMMUNITY	Showering Arc per NEMA 2-230, the 417 will withstand a voltage surge of 4500 volts for $50 \mu \mathrm{sec}$ without damage.
MOUNTING	Plug in base available in 8-Pin Octal or 11-Pin Round Base.
	Options: Surface mounting socket DIN rail mounting socket Panel mounting adapter kit Plug-in socket kit
POWER REQUIREMENTS	$\begin{aligned} & 24 \text { to } 240 \text { VAC \& } 24 \text { VDC, } 50 \text { or } 60 \mathrm{~Hz} \text {, } \\ & \text { (+10\%, - } 20 \% \text {) } 24 \text { to } 240 \mathrm{VAC} \text {. } \\ & \text { (+20\%, }-20 \% \text {) } 24 \mathrm{VDC} \\ & \text { DC MAXIMUM RIPPLE AT } 60 \mathrm{~Hz}-5 \% \end{aligned}$
LOAD RELAY	TYPE DPDT, Standard Models SPDT, Remote Reset Models
	LIFE $10,000,000$ operations (no load 100,000 operations with 5 AMPS at 30 VDC (or less) or 5 AMPS at 250 VAC (or less)
REPEAT ACCURACY	$\pm 5 \%^{*}$ *Variation from average actual time.
MINIMUM SETTING	2% of range
SETTING ACCURACY	$\pm 10 \%$
REMOTE RESET	50 mSEC minimum (remote reset models)
POWER ON TIME	1.0 SEC minimum
INDICATOR	Power on LED
HOUSING	$48 \mathrm{~mm}^{2}$ (1/16 DIN)
WEIGHT	5 oz (140 g)

True OFF-Delay Timer

- True Off-Delay mode of operation
- Output contacts rated 10A at 120/240 VAC
- Three timing ranges in a single unit:

10 SEC, 1 MIN, 10 MIN
5 SEC, 0.5 MIN, 5 MIN

- Universal power operation:

24 VAC to 240 VAC \& 24 VDC

- 8 -Pin or 11-Pin mounting.
- Remote reset models.
- $48 \mathrm{~mm}^{2}$ DIN standard housing
- Range selection is tamper-proof when panel-mounted.

TYPICAL APPLICATIONS

Whenever main power is interrupted, the 417 (adjustable from 0.1 SEC to 10 MIN), enables an emergency backup power source.

Controlled by a PLC, the 417 timing cycle can be aborted by using the remote reset terminal.

The 417B Directly Replaces 417A

DIMENSIONS

PANEL MOUNTING BRACKET
ATC P/N 406-320-02-00
PANEL MOUNTING
(UP TO 0188 THICK)

OPERATIONS

When power is applied to the timer, the relay energizes and the indicating LED turns on. Timing starts when power is removed, and the LED turns off. The output relay remains energized until the end of the cycle, or by connecting terminals 1 to 4 when using the Remote Reset Model. During time delay, power on will RESET Delay Time.

MODEL 417...F.X
Standard unit with DPDT relay contacts

MODEL 417...F.R
Same as standard unit except with SPDT relay contacts and ability to reset from an externally located remote reset switch

SETTING THE RANGE

Refer to the drawing. Using a small screwdriver inserted into the adjusting slot as shown (fig. 1), rotate the range switch. The selected range will appear through the window of the dial face.

MODEL NUMBER

MODEL NUMBER	417B		F		

ACCESSORIES 8-PIN

8-Pin surface/DIN rail socket	$000-825-85-00$
Hold down for above socket (Requires two per unit)	$407-025-13-00$
Panel mounting bracket	$405-320-02-00$
Plug-in socket kit (8-pin)	$319-261-45-00$
8-Pin panel socket w/rear facing terminals	$000-825-90-00$

ACCESSORIES 11-PIN

11-Pin surface/DIN rail socket	$000-825-86-00$
Hold down for above socket (Requires two per unit)	$407-025-13-00$
Panel mounting bracket	$405-320-02-00$
Plug-in socket kit (11-pin)	$319-260-07-00$

WIRING

TERMINAL WIRING

The 422AR Flip-Flop timer is available with Repeat Cycle operations. During Repeat Cycle operation the 422AR cycle ON and OFF repeatedly, allowing periodic cycling of a load. Two knobs are available to individually adjust the ON-time and the OFF-time. The 422AR can be configured with either the relay being energized during the first timing period or de-energized during the first timing period.

The 422AR have 6 selectable timing ranges available for both ON-time and OFF-time periods. The ranges are 1 and 10 SEC/MIN/HRS dip switch selectable. Having this flexibility allows for a load to be energized for a brief time over a cycle that lasts up to 10 hours. This is ideal for lubrication or other maintenance functions that must occur each shift or day during a plant operation.

The 422AR 1/16 DIN housing is compact, and designed for panel mounting. The timer is mounted in an 8-pin round socket. The front of the 422AR features 2 knobs. One knob is used to set the 0 N -time and the other knob is used to set the OFF-time for the timer's cycle.

The 422AR is universal powered by 20 to 240 VAC or 12 to 240 VDC operation voltage.
The output of the 422AR has a DPDT mechanical relay which is rated for 10 amps @ 250 VAC resistive. The 422AR can be ordered in a terminal option which is available with 5 amp Relay output.
The 422's have individual LED indicators for ON time and OFF time. These LED's provide a unique and effective method of cycle progress indication.

SPECIFICATIONS

SUPPLY VOLTAGE	20 to $240 \mathrm{VAC}, 12$ to 240 VDC. (AC: $50 / 60 \mathrm{~Hz}$)
OUTPUT CONTACT	DPDT
DELAY MODES	Cyclic ON first or OFF first (selectable by DIP switches)
TIME RANGES	$1 / 10$ SEC/ MIN / HR for both On \& Off time (selectable by DIP switches)

RELAY RATING

Model SOX 10A @ 230 VAC, resistive
Model S5TX 5A @ 230 VAC/24 VDC, resistive
POWER 2 VA max.

CONSUMPTION

ACCURACY	Setting: $\pm 5 \%$ of full scale.
$\pm 0.5 \%$ or 50 msec	
(whichever is greater).	

LED INDICATION	Power ON, Relay ON
RESET	On interruption of power
RESET TIME	Less than 100 mSEC.
HOUSING	Flame retardant plastic.
HUMIDITY	Up to 95% RH.
OPERATING	32° to $122^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
TEMPERATURE	

STORAGE $\quad-4^{\circ}$ to $167^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.75^{\circ} \mathrm{C}\right)$

TEMPERATURE

MOUNTING	Panel mounting
WEIGHT	115 gms

1/16 DIN Flip-Flop Timer

- Six Selectable Ranges: 1 and 10 SEC/MIN/HRS
- Individual adjustable ON-time and OFF-time
- Cycle can begin with relay energized or de-energized
- Relay rated 10A @ 250 VAC Resistive
- Compact Size (1/16 DIN)
- DPDT Relay Output
- Power: 20VAC to 240VAC 12VDC to 240VDC
- LED Indicator for Power and Relay energized output
- Can be DIN Rail mounted with DIN RAIL socket
- Faceplate IP40

DIMENSIONS (MILLIMETERS)

WIRING

8-PINPLUG-INTYPE

DIP SWITCH SETTINGS

Dip switch settings for time range selection

OFF TIME				ON TIME			
RANGE	SWITCH SETTING			RANGE	SWITCH SETTING		
	Sw1	Sw2	Sw3		Sw6	Sw7	Sw8
1 sec	OFF	OFF	ON	1 SEC	OFF	OFF	ON
1 min	ON	OFF	ON	1 MIN	ON	OFF	ON
1 hr	OFF	ON	ON	1 HR	OFF	ON	ON
10 sec	OFF	OFF	OFF	10 SEC	OFF	OFF	OFF
10 min	ON	OFF	OFF	10 MIN	ON	OFF	OFF
10 hr	OFF	ON	OFF	10 HR	OFF	ON	OFF

Dip switch settings for mode selection

Mode	Sw4	Sw5
OFF First	ON	OFF
ON First	OFF	ON

Switch setting example:
Off time range: 1sec
On time range: 10 min
On time range: 10 min
Mode :Cyclic off first

(S witch is Black Mark)

TERMINAL TYPE

(6)	(7)	(8)	(9)	$(10$
$L+\Theta^{-} \mathrm{N}$				

MODEL NUMBER

MODEL NUMBER	422AR	100	S	0	X
DPDT					
VOLTAGE 20-240 VAC 12-240 VDC			S		
CYCLE Repeat Cycle				0	
FEATURES Standard Unit					X

Note: Terminal connection model available as 422AR100S5TX with 5 amp relay only. Octal connection model available as 422AR100S5X with 5 amp relay only.

DIGITAL SETTING: The 425 is set digitally by rotating each setting knob until the desired Time Preset is displayed by the number wheels on the front of the timer. The digital setting allows exact, accurate and repeatable timing cycles.
HIGH ACCURACY: The 425 utilizes a crystal controlled oscillator which provides 0.1% timing accuracy across all rated voltages and temperatures.
CYCLE PROGRESS INDICATION: The 425 offers the industry's brightest green LED display in a $1 / 16$ DIN package. Depending on the Model, the three-digit LED display will time UP to or DOWN from the Time Preset.

Through its internal micro controller, the 425 keeps track of the time setting by monitoring each of the three Time Preset switches. Whenever a change is made in the time preset, even during a cycle, the 425 instantly re-computes and adjusts the current timing cycle.

1/16 DIN HOUSING: The $48 \mathrm{~mm}^{2}$ ($1 / 16$ DIN) housing is compact, allowing the 425 to be panel mounted or plug-in using an 8-pin octal socket. The decimal point and SEC/MIN/HRS switches are located on the side of the unit. When panel mounted, these range switches are not accessible to the operator. This Tamper-proof feature prevents unauthorized or hazardous changes to the timing range.

MEMORY OPTION: The 425 can be ordered as standard with an EEPROM memory. This allows the 425 to retain the elapse time or time remaining during momentary or sustained power interruptions.
INSTANTANEOUS AND DELAYED RELAY VERSIONS: A version of the 425 is available with one set of SPDT instantaneous contacts and one set of SPDT delayed contacts.
DELAYED RELAY VERSION: A version of the 425 is available with DPDT delayed contacts.

MODEL 425A300Q10XX (SPDT INSTANTANEOUS \& SPDT DELAYED
RELAYS): Timing starts when power is applied to terminals 2 and 7. The instantaneous relay energizes, the LED digital display begins to increment from 0 and the timing LED blinks slowly. When the preset value is reached, the LED blinks rapidly and the Delayed SPDT relay is energized. The timer remains in this timed-out condition until reset by removing power.
MODEL 425A300Q20XX (DPDT DELAYED RELAY): Timing starts when power is applied to terminals 2 and 7. The LED display begins to increment from 0 and the timing LED blinks slowly. When the preset value is reached, the LED stops, the timing LED blinks rapidly and the Delayed DPDT relay energizes. The timer remains in this timed-out condition until reset by removing power.
MODEL 425A300Q10MX \& MODEL 425A300Q20MX (MEMORY OPTION): Operation is same as above, however, units will not reset when power is removed during the timing cycle. Timers with this option can only be reset after time-out, or by adjusting the setting knobs to 000 during the timing cycle.
CAUTION: Be advised that the relay (s) will transfer when setting knobs are adjusted to 000 when power is applied.

1/16 DIN LED Digital Display Timer

- Easy-To-Read High Intensity Green LED Display
- Timing From . 01 SEC to 999 Hrs in One Unit
- Switch Selectable Timing Ranges Are Tamper Proof When Panel Mounted
- Timing LED Indicates Output Relay Status
- Time Preset Can Be Adjusted While Timing
- EEPROM memory Option Standard Feature
- Passes NEMA Showering Arc Noise Test
- Panel Mounting or 8-pin Octal Plug-in mounting
- Timing Up to or Down From the Set Point

MODEL NUMBER

MODEL NUMBER	425A	300	Q			
RANGE						
0 to 9.99 or 99.9 or						
VOLTAGE \& FREQUENCY						
OUTPUT ARRANG Instantaneous Delay Relay (MENT Relay (S PDT)			10		
Delay Relay (DPDT)				20		
			Standard-No Memory		X	
With Memory (EEPROM					M	
FEATURES						
Standard (Time Down)						D
Special						K

ACCESSORIES 8-PIN

8-Pin surface/DIN rail socket	$000-825-85-00$
Hold down clips for above socket	$407-025-13-00$
Panel mounting bracket	$405-320-02-00$
Plug-in socket kit (8-pin)	$319-261-45-00$
8-Pin socket w/rear facing terminals	$000-825-90-00$

TYPICAL CIRCUITS

RELAY	CONTACTS	Before Start	During Timing	End of Cycle
	$1-3$			
	$1-4$			
Delayed	$8-6$			
	$8-5$			

DIMENSIONS (INCHES/MILLIMETERS)

The 5708A model is an all in one unit that can be used as a timer, counter, frequency meter, and a tachometer. This unit contains 23 functions (15 timer, 6 counter, frequency meter, \& tachometer), which are selectable through the set up menu. Engineered with a unique battery cover design for easy battery replacement, this unit needs no external power source.

- Functions as a Timer, Counter, Frequency Meter or Tachometer
- 8-digit High Resolution LCDI
- Front IP66 Water Protection
- 15 Selectable Display Options
- Battery Operated

Multi-Function Timer-Counter
SPECIFICATIONS

RESET	Front Panel / Remote
DISPLAY	LCD (8mm high)
NUMBER OF DIGITS	8
MAX. 5-DIGIT DISPLAY	$150-78,000$
COUNT IINPUT	Switch Closure \quad Dry Contact
OPERATING	14° to $131^{\circ} \mathrm{F}\left(-10^{\circ}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
TEMPERATURE	
OPERATING POWER	LR44 Battery
MOUNTING	$1 / 32$ Din
FRONT WATER PROTECTION	IP66
SCREW TYPE	M3
WEIGHT	1.164 oz.
VIBRATION	IEC 60068-2-6
IEC 60068-4-2	$4 \mathrm{KV} \mathrm{Air/2KV} \mathrm{Contact}$
IEC 60068-4-3	$10 \mathrm{~V} / \mathrm{m} \mathrm{(80MHz} \mathrm{to} \mathrm{1GMHz)}$
IEC 60068-4-4	1 KV Input

ORDERING INFORMATION

MULTIFUNCTIONING timer-COUNTER

5708A

TIMER
Display Unit day/hour/min/sec
15 Display functions(Selectable)

COUNTER

Frequency Response is programmable for elimination of outside Switch key-bounce, and edge trigger.
$<50 \mathrm{cps}$ (rising and falling edge)
$<100 \mathrm{cps}$ (rising and falling edge)
$<600 \mathrm{cps}$ (rising and falling edge)
FREQUENCY METER
Response Frequency
4-digit display $\quad 2.500-1300 \mathrm{~Hz}$
TACHOMETER
RPM range
150 RPM - 78,000 RPM
Max. 5-Digit Display
150-78,000

DIMENSIONS
(MILLIMETERS)

7-Day Timer

Two Channel version 7DT-2CH

- Daily, weekly program in one device
- Two independent channels of control
- Switching: according to the program (AUTO)/or manually
- High accuracy of timing due to special calibration
- Easy programming via 4 keys, clear LCD display, min. interval 1 sec .

MODEL NUMBER

MODEL NUMBER	Description
7DT-2CH	Digital Timer

DIMENSIONS

The ATC 7DT-2CH, Din Rail Timer is ideally suited for timing applications needing a daily or weekly schedule. The clear LCD display provides visible indication of output, mode, day and time. With two independent channels and 16A contacts, the powerful 7DT-2CH delivers high accuracy in a convenient DIN Rail mounting package.

SPECIFICATIONS

SUPPLY TERMINALS	A1-A2
SUPPLY VOLTAGE	AC/DC 12-240 V (AC 50-60 Hz)
CONSUMPTION	AC 0.5-2 VA / DC 0.4-2 W
SUPPLY VOLTAGE	$-15 \% ;+10 \%$
TOLERANCE	

SUMMER/WINTER TIME Automatic

OUTPUT	
CONTACTS	2-SPDT
RATED CURRENT	16 A AC
INRUSH CURRENT	$30 \mathrm{~A} /<3 \mathrm{sec}$
SWITCH VOLTAGE	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
MIN. BREAKING CAPACITY DC 500 mW	
MECHANICAL LIFE	$>3 \times 10^{7}$

TIME CIRCUIT

POWER BACK-UP	3 years
ACCURACY	Max. $\pm 1 \mathrm{~s} /$ day at $20^{\circ} \mathrm{C}$
MINIMUM INTERVAL	1 sec
DATA STORED FOR	10 years min.

OTHER INFORMATION

OPERATING TEMPERATURE	-20 to $+60^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
STORAGE TEMPERATURE	-30 to $+70^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$

ELECTRICAL STRENGTH	4kV (supply-output)
MOUNTING	DIN Rail EN 60715
PROTECTION DEGREE	IP 20
MAX. CABLE SIZE	Without Cavern:
	Max. $2 \times 1.5 \mathrm{~mm}^{2}, 2 \times 2.5 \mathrm{~mm}^{2}$
	With Cavern:
	Max. $2 \times 1.5 \mathrm{~mm}^{2}, 1 \times 2.5 \mathrm{~mm}^{2}$
DIMENSIONS	$\begin{aligned} & 90 \times 35.6 \times 64 \mathrm{~mm} \\ & \left(3.543^{\prime \prime} \times 1.402 \mathrm{\prime} \mathrm{\prime} \times 2.520^{\prime \prime}\right) \end{aligned}$
WEIGHT	$130 \mathrm{~g}(4.586 \mathrm{OZ})$
STANDARDS	EN 61812-1, EN 61010-1

PROGRAM CIRCUIT

PROGRAM	Daily, Weekly
DATA READOUT	LCD Display

Through advanced circuit design and packaging technology, the ON Delay ATC 313 packs all of the performance of a conventional plug-in TDR in a space-saving housing. It features a digital timing circuit which ensures high repeat accuracy and excellent noise immunity.
MINIATURE HOUSING: You can mount several ATC 313 timers in the same space as a single conventional TDR.
DIGITAL ACCURACY: A custom C-MOS integrated circuit accurately measures the dial-adjustable delay by counting the output of an internal oscillator. Repeat accuracy remains high even with variations in voltage, temperature and reset time.

STATUS INDICATORS: Two LEDs clearly indicate the operational status of the 313: one is energized when power is applied; the other is off during the delay period and on at time-out.

INDUSTRIAL QUALITY: With a load relay capable of switching 7A resistive loads and a C-MOS design that protects components against noise and voltage transients, the 313 is built for industrial use.

SPECIFICATIONS

4 RANGES (AND MINIMUM SETTINGS)	0.1-1.0 SEC.
	0.5-10.0 SEC.
	3 SEC. - 1 MIN.
	30 SEC. - 10 MIN.
LOAD RELAY	TYPE 2 Form C
	LIFE AC 50,000,000 operations(no load)
	LIFE DC 100,000,000 operations (no load)
TEMPERATURE RATING	15° to $120^{\circ} \mathrm{F}\left(-10^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
CONTACT RATING	7A resistive $1 / 10 \mathrm{HP}$ at 120 V
MOUNTING	Plug-in optional surface-mounting socket with screw terminals; optional PC board mount socket and wire wrap
POWER REQUIREMENTS	120 VAC 80 to $132 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 20 \mathrm{~mA}$
	240 VAC 160 to 242V, $50 / 60 \mathrm{~Hz}, 13 \mathrm{~mA}$
SETTING ACCURACY	$\pm 10 \%$ of range at full scale
REPEAT ACCURACY	$\pm 1 \%$ of setting or 10 ms when temperature and voltage are constant
	$\pm 7 \%$ of setting when temperature and voltage change within specified operating limits
RESET TIME	0.1 SEC during timing and at least 15 ms after time out
HOUSING	Dust, moisture and impact-resistant molded polycarbonate

Plug-In Adjustable TDR

MODEL NUMBER

MODEL NUMBER	313B	10			
VOLTAGE \& FREQUENCY					
$120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$			Q		
240 VAC, $50 / 60 \mathrm{~Hz}$			R		
ARRANGEMENT					
On-Delay				1	
Special				0	
FEATURES					
Standard					X
Special					K

ACCESSORIES

Surface Mounting Socket
000-825-81-00
PC Board Socket
000-825-82-00

TERMINAL WIRING

The ATC 314 is an economical multi-range solid-state TDR with two models; one for off-delay (delay-on-break) and one for interval-on-delay operation. With three dial-selected adjustable ranges, it provides any timing period between 0.035 and 100 SEC with excellent repeat accuracy even with wide changes in voltage, temperature and reset time.

OFF-DELAY MODEL: Presuming the AC line is energizing the unit continuously, when the start switch is closed the relay energizes, the pilot light goes on and the unit resets. Opening the start switch begins the timing cycle. A relaxation oscillator runs at a rate determined by the set pot. When the oscillator count is equal to the level set by the range switch, a digital count circuit is satisfied and the unit times out.

At time out, the timing circuit and relay are de-energized and the pilot light goes off. Closing the start switch resets the unit. After a power failure (or on first startup) the unit will go to the timed out condition (relay de-energized) until the unit is reset by closing the start switch to begin a new cycle.

INTERVAL-ON-DELAY MODEL: Timing begins when the start switch is closed; simultaneously the relay is energized and the pilot light goes on. Either a momentary/sustained start or a sustained start input can be used (see wiring). Reset is accomplished by de-energizing the unit. At time-out, the timing circuit and relay are de-energized and the pilot light goes off.

WIRING

OFF-DELAY (Delay on Break) (Drawn power off-relay de-energized)

INTERVAL-ON-DELAY Momentary or Sustained Start Sustained Start*

Plug-In Multi-Range Off-Delay/Interval

MODEL NUMBER

MODEL NUMBER	314B			

ACCESSORIESA

Surface Mounting Socket	$000-825-63-00$
Retaining clip for use with socket	$319-025-06-00$
Panel mount bezel kit	$319-261-44-00$
Panel mount socket kit	$314-260-07-00$

TERMINAL WIRING

11 PIN SURFACE MOUNT SOCKET

An economical ON-delay solid-state TDR with octal plug-in base, the ATC 319 maintains excellent repeat accuracy despite wide voltage and temperature variations, even after long periods of down-time. One model has five dial-selected adjustable ranges and provides any timing period between 0.02 SEC and 30 MIN .
WIDE CHOICE OF RANGES: In addition to the short ranges expected of an electronic TDR, the 319 is also available with ranges as long as 100 minutes, for $A C$ or $D C$ operation. An unusually versatile model, the 319 five ranger has five dial-selected ranges-from 0.3 SEC to 30 MINand provides any dial-adjustable timing period between 0.02 seconds and 30 minutes; (1,10 and 100 SEC and 10 and 100 MIN). A single 319 model thus accommodates the needs of a wide range of applications, allowing the user to select--easily and precisely--an appropriate range to permit optimum setting accuracy. The dial face automatically displays the selected range. The 319 offers a choice of five dial-adjustable fixed ranges between 1 SEC and 30 SEC.
CYCLE PROGRESS INDICATION—MODEL 319E: All options incorporate a light-emitting diode (LED) which is on during the time cycle, off at the end of timing. The 5 -range option also includes a second LED which separately indicates the status of the output relay: on when energized, off when de-energized.
HIGH ACCURACY: The 319's timing circuit is not subject to the large plus error that plagues many electronic TDRs after long periods of downtime: it maintains rated accuracy regardless of reset time variations, provided that there is at least 0.1 SEC between cycles for Model 319. All models hold unusually high repeat accuracy in the face of wide voltage and temperature swings.

OPERATIONS

Timing begins when the start switch is closed. At the same time, the Timing LED goes on and a relaxation oscillator starts to run at a rate determined by the set-pot. The 319 times out when the oscillator count is equal to the level set by the range switch, a second LED turns on at time-out. At time-out, the load relay is energized, transferring its contacts. Reset occurs when the start switch is opened or when power is interrupted.

Plug-In Adjustable AC/DC TDR

MODEL NUMBER

WIRING

TERMINAL WIRING

[^1]| SPECIFICATIONS | |
| :--- | :--- |
| | 319E-AC or DC; 5 dial-selected adj. ranges
 MODELS |
| | All models operate in on-delay mode only. |

DIMENSIONS
 (INCHES/MILLIMETERS)

8 PIN OPTIONAL OCTAL SOCKET

CUT OUT

PANEL MOUNT SOCKET

A versatile dial-adjustable time delay relay, the ATC 328 provides a choice of ON-delay, OFF-delay or interval operation for any timing period between 50 mSEC and 10 hours-all in the same timer. Based on a unique digital circuit,it features cycle progress annunciation and is suitable for the most demanding industrial service.

DESIGNED FOR INDUSTRIAL SERVICE: With a load relay that is rated for 100,000,000 mechanical operations,and power supply that protects circuit components against the voltage transients that are typical of industrial plants, the 328 has a long life expectancy even in tough environments.

CYCLE PROGRESS INDICATION: The 328's LED annunciator provides a unique and extremely effective method of cycle progress indication. Off before timing, the LED blinks at an ever-increasing rate as the cycle progresses: once every $3-1 / 2$ seconds during the first 10% of the cycle, twice during the second 10%,and so on. At time-out, the LED stays on constantly, pulsing at a high rate. (In the 1 and 10-second ranges, the LED is off before timing, steady on during timing, and pulsing on after time-out.)

VERSATILE MOUNTING: The standard 328 has an 11-pin base which accepts push-on connectors or plugs into a surface-mounted socket. Since all connections are made to the socket, the 328 is readily removed without disturbing the wiring. It is also available with an optional quick-connect plug and brackets for flush panel-mounting.

MULTIPLE RANGES REDUCES INVENTORY: Because the 328 has six switch-selected ranges-from 1 SEC to 10 hours-each timer can provide any dial-adjustable timing period between 50 ms and 10 hours-thus greatly reducing inventory requirements especially for large users. The range selector switch knob can be easily removed to prevent unauthorized range change.
HIGH ACCURACY: The 328's digital circuit maintains rated accuracy from cycle to cycle,regardless of reset time. Its oscillator-based circuit is also effectively compensated for changes in temperature and voltage and thus achieves excellent overall accuracy.

VERSATILE CONTROL CAPABILITY: Every 328 can be used for either ON-Delay, OFF-Delay or interval operation, depending on how its terminal block is wired.

OPERATIONS

Control action of the 328 depends on how its terminal block is wired (see Wiring diagrams.)
In ON-DELAY OPERATION, timing begins when the start switch is closed. The load relay contacts transfer at the end of the timed period. Reset occurs when the start switch is opened or when there is a power interruption.

In OFF-DELAY OPERATION,timing begins when the start switch is opened. The load relay contacts transfer at the end of the timed period and back again at reset. Reset occurs when the start switch is closed. Control action of all loads is delayed, either closed-closed-open or open-open-closed.

In INTERVAL CONTROL,timing begins when the start switch is closed. The load relay contacts transfer at the beginning and at the end of the timed period, thus providing true interval control,either open-closed-open or closed-open-closed. The start signal may be either sustained or momentary;in the latter case, the start signal is "latched in" by wiring it to one of the load relay's two sets of contacts. Power interruption resets the timer.

MODEL NUMBER

	MODEL NUMBER	200	F	

ACCESSORIES

DIN/Surface Mount Socket with
000-825-89-99
hold down clips

DIN/Surface Mount Socket	$000-825-89-00$
Panel Mounting Plug-In	$328-260-01-00$
Socket	
Panel Mounting Kit	$328-260-02-00$

Consisting of Gasket and 2 Clamps

SPECIFICATIONS

MODELS	One model provides all ranges and control modes. 328E200F10XX
RANGE	Six switch-selected ranges:
	1 SEC
	10 SEC
	1 MIN
	10 MIN
	1 HR
	10 HR
MINIMUM SETTING	2% of range, except 50 ms on 1 SEC range.
LOAD RELAY	TYPE DPDT
	LIFE 100,000,000 operations (no load)
	CONTACT AC: 10 A (resistive) at $125-250 \mathrm{~V} .1 / 8 \mathrm{HP}$
	RATING DC: 10A at 30 VDC .
TEMPERATURE RATING	0° to $140^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
MOUNTING	11 blade case plugs into matching socket with 11 screw terminals; blades also accept $0.187^{\prime \prime}$ push-on connectors.
	OPTIONAL: kit provides 11-pin plug-in socket and 2 brackets for flush panel mounting.
POWER REQUIREMENTS	24 VAC to 240 VAC and 24 VDC
	AC (+10\%,-20\%) 50/60Hz
	DC (+20\%,-20\%)
	Maximum Ripple @ 100 Hz -5\%
SETTING ACCURACY	10\% of range
REPEAT ACCURACY	Varies with changes in line voltage and ambient temperature but not with reset time: $\pm 0.5 \%$ of setting or 15 mSEC over the entire voltage and temperature range.
TIMING MODES	ON-Delay/OFF-Delay/Interval
INDICATOR	Timing LED
RESET TIME	ON-DELAY 100 mSEC max.
	OFF-DELAY 50 mSEC max.
	INTERVAL 100 mSEC max.
HOUSING	Plug-in design; dust, moisture and impact-resistant molded plastic case. DIN size ($48 \mathrm{~mm} \times 96 \mathrm{~mm}$)
WEIGHT	NET: 7 oz . SHIPPING: 1 lb .

The 329 on-delay TDR with plug-in base maintains excellent repeat accuracy despite wide voltage and temperature variations. A choice of seven ranges are available from 1 second to 3 minutes.
Performance Value: Ruggedly designed into a $36 \times 36 \mathrm{~mm}$ housing, the 329 On-Delay TDR combines both highly accurate and repeatable timing with industrial quality that is usually found in only the more expensive timers.
CHOICE OF RANGES: The 329 is offered in a choice of seven different ranges between 1 second to 3.0 minutes to permit optimum setting accuracy. The dial face clearly displays the range.

DESIGNED FOR INDUSTRIAL SERVICE: The 329 incorporates features designed to ensure a long trouble-free life expectancy, even in difficult industrial environments: high impact resistant housing with octal plug-in base that is easily surface/DIN or panel mounted; a DPDT 5 amp relay rated for 10 million operations at no load; and an oscillator-based timing circuit for high accuracy even with changes in temperature and voltage.

HIGH ACCURACY: The 329's timing circuit is not a simple RC circuit, but it utilizes the sophistication of a proprietary integrated circuit that includes counting technology along with a stable oscillator to provide repeatable time delays.

Timing begins when the start switch is closed. This starts an oscillator which runs at a frequency determined by the time setting. A fixed number of counts from the oscillator determines the end of the time cycle. The time required to accomplish this depends on the oscillator frequency.

SPECIFICATIONS

At time out, the built-in relay transfers its contacts. These contacts remain transferred until the start switch is opened or power is removed by some other means. The 329 then resets and is ready for another cycle.

WIRING

Solid-State Time Delay Relay

The 339B is a solid-state TDR with octal plug-in base that maintains excellent repeat accuracy despite wide voltage and temperature variations even after long periods of down-time. The 339B has six dial selected ranges from fractions of a second to as long as 10 hours and selectable on-delay or interval timing modes. Fixed timing units are available upon request.

WIDE CHOICE OF RANGES: In addition to the short ranges expected of an electronic TDR, the 339 is also available with ranges as long as 10 hours. An unusually versatile timer, the 339 has six dial-selected ranges-from 0.3 seconds to 3 hours or 1 second to 10 hours-and provides dial-adjustable timing periods between 0.075 seconds and 10 hours. A single 339 model thus accommodates the needs of a wide range of applications, allowing the user to select easily and precisely -an appropriate range to permit optimum setting accuracy. The dial face automatically displays the selected range.

CYCLE PROGRESS INDICATION: The 339's LED annunciator provides a unique and effective method of cycle progress indication. Off before timing, the LED blinks at an ever-increasing rate as the cycle progresses; once every 3-1/2 seconds during the first 10% of the cycle, twice during the second 10%, and so on. At time-out, the LED stays on constantly, pulsing at a high rate. (In the 1 and 10 -second ranges, the LED is off before timing, steady on during timing, and pulsing on after time-out.)
HIGH ACCURACY: The 339's timing circuit is not a simple RC circuit, but includes counting technology along with a stable oscillator to provide repeatable time delays.

MULTIPLE TIMING MODES: Every 339 can be used for either on-delay or interval timing operation. The timing mode is selectable by a switch on the 339 housing.

OPERATION

Timing begins when the start switch is closed. This starts an oscillator which runs at a frequency determined by the time setting. A fixed number of counts from the oscillator determines the end of the time cycle. The time required to accomplish this depends on the oscillator frequency. During timing, a LED located on the dial face blinks. For the first ten percent of the cycle, the LED repeatedly blinks once followed by a pause, for the second 10%, it blinks twice and so on indicating the cycle progress. It flashes rapidly and continuously after time out.

ON-DELAY MODE: At time out, the built-in relay transfers its contacts. These contacts remain transferred until the start switch is opened or power is removed by some other means. The 339 then resets and is ready for another cycle.

INTERVAL MODE: When timing begins, the built-in relay transfers its contacts. The contacts remain transferred until time out. The timer will not start again until the start switch is opened or power is removed by some other means. The 339 then resets and is ready for another cycle.

WIRING

SPECIFICA	ONS	DIMENSIONS (INCHES/MILLIMETERS)
MODELS	Choice of two multi-range units. All models operate in on-delay or interval mode.	$\left.-\frac{1.42}{36} \longrightarrow\left\|\quad \stackrel{\frac{435}{11.05}}{\rightarrow-\frac{1.50}{3.8}} \frac{\frac{2.80}{71.12}}{\longrightarrow}\right\| \frac{570}{14.48} \right\rvert\,$
RANGES	Choice of two models Six dial-selected ranges:1.0 and 10 SEC, MIN, HR or 0.3 and 3 SEC, MIN, HR	
MINIMUM SETTING	3% of range, except 75 mSEC on 0.3 SEC and 1.0 SEC ranges.	$\frac{12}{20}$
LOAD RELAY	TYPE DPDT 10 AMPS resistive at 30 VDC or 250 VAC (or less) $1 / 8$ HP @120 VAC LIFE 10 million operations with no load 100,000 operations with:10 AMPS at 30 VDC (or less) or 10 AMPS at 250 VAC (or less) CONTACT Silver Nickel MATERIAL	
TEMPERATURE RATING	0° to $140^{\circ} \mathrm{F}\left(-17^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$	8 PIN OPTIONAL OCTAL SOCKET NO. 00008258500
MOUNTING	Plug-in octal base; mounts in any position with retaining clips. OPTIONS: Surface mounting socket DIN rail mounting socket Panel-mounting adapter kit Plug-on socket Rear facing terminal socket.	
POWER REQUIREMENTS		00008258500 SOCKET WITH 339-025-03-00
REPEAT ACCURACY	Varies as a function of line voltage and temperature but not of reset time a $\pm 0.5 \%$ at constant temperature and voltage. (or $\pm 15 \mathrm{mSEC}$ whichever is greater) b $\pm 1 \%^{*}$ at constant voltage and full temperature range. (or $\pm 25 \mathrm{mSEC}$ which ever is greater) c $\pm 1.5 \%^{*}$ at constant temperature and full voltage range. (or $\pm 25 \mathrm{mSEC}$ whichever is greater) d $\pm 2 \%^{*}$ over full voltage and temperature range. (or $\pm 30 \mathrm{mSEC}$, which ever is greater) *Variations of line voltage must be within 95 and 132 V ; of temperature between -17° and $60^{\circ} \mathrm{C}\left(0^{\circ}\right.$ and $\left.140^{\circ} \mathrm{F}\right)$	HOLD DOWNS
RECYCLE CHARACTERISTICS	The timer can be used as a pulse generator with L 1 power wired though its NC contacts. The pulse will be 35 mSEC to 90 mSEC long. (40 mSEC typical pulse.) a 0 to 20 mSEC power interruption; Guaranteed no reset. b 20 mSEC to 90 mSEC ; it may reset. (40 mSEC typical reset) c Over 90 mSEC guaranteed to reset. The TDR will reset properly and not start timing when subjected to an open start switch leakage of 1.5 mA or less. (Prox switch and Triac drive applications)	
WEIGHT	2.5 oz. (70 g)	

When supply voltage is applied, the OFF delay (T1) begins. Upon completion of the OFF delay, the load energizes and the ON delay (T2) begins. Upon completion of the ON delay, the load de-energizes and one cycle is complete. This ON/OFF cycling continues until the supply voltage is removed. The OFF delay always equals the ON delay.

DIMENSIONS (INCHES)

SUPPLY

SPECIFICATIONS

TIMING ACTION	Flasher, 50\% Duty Cycle
TIMING RANGE	Factory Fixed, (45-150) Flashes per minute $\pm 20 \%$
OUTPUT RATING	1 A Resistive 10 A Maximum (Inrush) (Fullwave) 40 mA Minimum (Hold in Current) 2.5 Volt Drop @ 1 A
	3 A Resistive 10 A Maximum (Inrush) (Halfwave) 40 mA Minimum (Hold in Current) 1.1 Volt Drop @ 3 Amp
SUPPLY VOLTAGE	120 VAC; $\pm 15 \%$, 50/60 Hertz
TERMINATIONS	(2) 6 inch wires, 18 AWG, 300 Volt
TEMPERATURE RATING	Operate -4° to $140^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$ Free Air
	Storage $\quad-40^{\circ}$ to $185^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
MOUNTING	No. 8 or No. 10 Screw
ENCLOSURE	Polycarbonate Case, Totally Encapsulated for Environmental Protection
WEIGHT	0.1 lbs .

Solid-State Flasher

- Totally Solid-state
- 2-Wire Leads (Series Connection with Load)
- Totally Encapsulated Circuitry
- Molded Case with Built-In Mounting Feature
- High Inrush Capability
- Low Cost
- 1 Amp (Fullwave) and 3 Amp (halfwave) versions

MODEL NUMBER

MODEL NUMBER	ETN	120		F	T	75
VOLTAGE 120 Volts		120	VOLTAGE			
TYPE OF VOLTAGE AC Voltage			A			
3 Amp Halfwave			H			
TYPE OF OPERATION Fixed Unit			TYPE OF OPERATION			
ENCLOSURE Enclosure Type			ENCLOSURE			
FLASHING RATE 75 Flashes/minute Contact factory for	Stand ther	d) hing				75

Interval DIP Switch TDR

SPECIFICATIONS

TIME DELA RANGE

A 0.1 to 102.3 SEC in 0.1 SEC Increments B 1.0 to 1,023 SEC in 1.0 SEC Increments C 10 to 10,230 SEC in 10 SEC Increments D 0.1 to 102.3 MIN in 0.1 MIN Increments E 1.0 to $1,023 \mathrm{MIN}$ in 1.0 MIN Increments

OUTPUT RATING 10 A @ 250 VAC or 24 VDC, resistive

ACCURACY	$\frac{\text { Setting } \pm 2 \% \text { or } \pm 50 \mathrm{mSEC} \text {; whichever is greater }}{\text { Repeat } \pm 0.1 \% \text { or } \pm 8.3 \mathrm{mSEC} \text {; whichever is greater }}$

RESET TIMES	Before Time Out	100 mSEC
	After Time Out	50 mSEC

SUPPLY VOLTAGE $12,24,48,120$ or $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$; or DC; $\pm 10 \%$
FALSE TRANSFER No

REVERSE Yes

POLARITY
POWER REQUIRED 3 VA, approximately

DUTY CYCLE	Continuous	
TEMPERATURE	Operate	32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage	-49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

LIFE EXPECTANCY Mechanical 10 million operations, minimum Electrical 100,000 operations @ rated load

INDICATORS	LED glows when relay is energized
ISOLATION	1,500 volts, input/output
WEIGHT	0.35 lbs.

DIMENSIONS (IICHES)

OPERATION

When supply voltage is applied to the input terminals, the relay energizes and the time delay begins. Upon completion of the delay period, the relay de-energizes. Reset occurs on power removal during or after the time delay relay.

DIP SWITCH OPERATION

Digital selection of the time delay is accomplished by the use of ten (10) binary switches, each marked with a time increment. The time periods, of which there are five (5) ranges, represented by each switch in the ON position is added together to obtain the desired time delay. No more trial-by-error adjustments.

WIRING

MODEL NUMBER

The time delay begins when supply voltage is applied to the input. Upon completion of the delay period, the relay energizes. Reset during or after the delay period is accomplished by removal of the supply voltage. The TBC Series will not false transfer if supply voltage is removed prior to completion of the delay period. A fast recycle time permits accurate, high speed, continuous operation.

DIP SWITCH OPERATION

Digital selection of the time delay is accomplished by the use of ten (10) binary switches, each marked with a time increment. The time periods, of which there are five (5) ranges, represented by each switch in the ON position is added together to obtain the desired time delay. No more trial-by-error adjustments.

WIRING

RB-08/PF083A

MODEL NUMBER

On-Delay DIP Switch TDR

SPECIFICATIONS

TIME DELAY	A	0.1 to 102.3 SEC in 0.1 SEC Increments
RANGE	B	1.0 to 1,023 SEC in 1.0 SEC Increments
	C	10 to 10,230 SEC in 10 SEC Increments
	D	0.1 to 102.3 MIN in 0.1 MIN Increments
	E	1.0 top 1,023 MIN in 1.0 MIN Increments

OUTPUT RATING	$10 \mathrm{~A} @ 250$ VAC or 24 VDC , resistive
ACCURACY	Setting $\pm 2 \%$ or $\pm 50 \mathrm{mSEC}$; whichever is greater
Repeat $\pm 0.1 \%$ or $\pm 8.3 \mathrm{mSEC}$; whichever is greater	

RESET TIMES	Before Time Out 100 mSEC	
	After Time Out	50 mSEC

SUPPLY VOLTAGE	$12,24,48,120$ or $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} ;$ or $\mathrm{DC} ; \pm 10 \%$

FALSE TRANSFER No
REVERSE POLARITY Yes
PROTECTED

POWER REQUIRED 3 VA, approximately

DUTY CYCLE	Continuous	
TEMPERATURE	Operate	32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage	-49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

LIFE EXPECTANCY	Mechanical 10 million operations, minimum
	Electrical 100,000 operations @ rated load
INDICATORS	LED glows when relay is energized
ISOLATION	1,500 volts, input/output
WEIGHT	0.35 lbs.

DIMENSIONS (INCHES)

SPECIFICATIONS

TIME DELAY RANGE

A	0.1 to 102.3 SEC in 0.1 SEC Increments
B	1.0 to 1,023 SEC in 1.0 SEC Increments
C	10 to 10,230 SEC in 10 SEC Increments
D	0.1 to 102.3 MIN in 0.1 MIN Increments
E	1.0 to 1,023 MIN in 1.0 MIN Increments
OUTPUT	SPDT 10 A @ 250 VAC or 24 VDC, resistive
RATING	DPDT 5 A @ 240 VAC
ACCURACY	Setting $\pm 2 \%$ or $\pm 50 \mathrm{mSEC}$; whichever is greater
	Repeat $\pm 0.1 \%$ or $\pm 8.3 \mathrm{mSEC}$; whichever is greater
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
SUPPLY VOLTAGE	$\begin{aligned} & 12,24,48,120 \text { or } 240 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} ; \text { or } \mathrm{DC} ; \pm 10 \% \end{aligned}$
FALSE TRANSFER No	
REVERSE Yes POLARITY PROTECTED	
POWERREQUIRED	
DUTY CYCLE	Continuous
TEMPERATURE RATING	Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
	Storage -49° to $185{ }^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
LIFE EXPECTANCY	Mechanical 10 million operations, minimum
	Electrical $\begin{aligned} & 100,000 \text { Operations @ rated } \\ & \text { load }\end{aligned}$
INDICATORS	LED glows when relay is energized.
ISOLATION	1,500 volts, input/output
WEIGHT	0.4 lbs.

OPERATION

Supply voltage is continuously applied to the input. An external isolated switch between pins 5 and 6 controls the timer. When closed, the relay energizes. Opening the switch initiates the delay period. Upon completion of the delay period, the relay de-energizes. If the control switch recloses during the delay period, the relay remains energized and the timer resets to zero. NOTE: The TBD Series is available in an 8-pin SPDT and an 11-pin DPDT configuration.

DIP SWITCH OPERATION

Digital selection of the time delay is accomplished by the use of ten (10) binary switches, each marked with a time increment. The time periods, of which there are

\qquad 600 MINUES
(10 HOURS) five (5) ranges, represented by each switch in the ON position is added together to obtain the desired time delay. No more trial-by-error adjustments.

MODEL NUMBER

MODEL NUMBER TBD				A	
CONTROL VOLTAGE					
24 Volts AC/DC	24	A			
48 Volts DC	48	D			
120 Volts AC/DC	120	A			
240 Volts AC	240	A			
time delay range					
0.1 to 102.3 SEC in 0.1 SEC Increments			A		
1.0 to 1,023 SEC in 1.0 SEC Increments			B		
10 to 10,230 SEC in 10 SEC Increments			C		
0.1 to 102.3 MIN in 0.1 MIN Increments			D		
1.0 to 1,023 MIN in 1.0 MIN Increments			E		
HOUSING				A	
OPTION					D

OPERATION

Supply voltage is continuously applied to the input. An external control isolated switch between pins 5 and 6 initiates the time delay. When closed (momentary or maintained), the relay energizes and the delay period begins. Upon completion of the delay period, the relay de-energizes. NOTE: The TBE Series is available in an 8-pin SPDT and an 11-pin DPDT configuration.

DIP SWITCH OPERATION

Digital selection of the time delay is accomplished by the use of ten (10) binary switches, each marked with a time increment. The time periods, of which there are
 five (5) ranges, represented by each switch in the ON position is added together to obtain the desired time delay.
No more trial-by-error adjustments.

MODEL NUMBER

MODEL NUMBER TBE				A	
CONTROL VOLTAGE					
12 Volts DC	12	D			
24 Volts AC/DC	24	A			
48 Volts DC	48	D			
120 Volts AC/DC	120	A			
240 Volts AC	240	A			
TIME DELAY RANGE					
0.1 to 102.3 SEC in 0.1 SEC Increments			A		
1.0 to 1,023 SEC in 1.0 SEC Increments			B		
10 to 10,230 SEC in 10 SEC Increments			C		
0.1 to 102.3 MIN in 0.1 MIN Increments			D		
1.0 to 1,023 MIN in 1.0 MIN Increments			E		
HOUSING				A	
OPTION					D

Single Shot DIP Switch TDR

SPECIFICATIONS

TIME DELAY RANGE

A	0.1 to 102.3 SEC in 0.1 SEC Increments
B	1.0 to 1,023 SEC in 1.0 SEC Increments
C	10 to 10,230 SEC in 10 SEC Increments
D	0.1 to 102.3 MIN in 0.1 MIN Increments
E	1.0 to 1,023 MIN in 1.0 MIN Increments
OUTPUT	SPDT 10 A @ 250 VAC or 24 VDC , resistive
RATING	DPDT 5 A @ 240 VAC
ACCURACY	Setting $\pm 2 \%$ or $\pm 50 \mathrm{mSEC}$; whichever is greater
	Repeat $\pm 0.1 \%$ or ± 8.3 mSEC; whichever

RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
SUPPLY	$12,24,48,120$ or 240 VAC,
VOLTAGE	$50 / 60 \mathrm{~Hz}$; or $\mathrm{DC} ; \pm 10 \%$

FALSE TRANSFER No

REVERSE Yes

POLARITY
PROTECTED

POWER	3 VA, approximately
REQUIRED	

DUTY CYCLE	Continuous	
TEMPERATURE	Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$	
RATING	Storage -49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	
LIFE	Mechanical 10 million operations, minimum	
EXPECTANCY	Electrical100,000 Operations @ rated load	

INDICATORS	LED glows when relay is energized.
ISOLATION	1,500 volts, input/output
WEIGHT	0.4 lbs.

SPECIFICATIONS

time delay range

A	0.1 to 102.3 SEC in 0.1 SEC Increments
B	1.0 to 1,023 SEC in 1.0 SEC Increments
C	10 to 10,230 SEC in 10 SEC Increments
D	0.1 to 102.3 MIN in 0.1 MIN Increments
E	1.0 to 1,023 MIN in 1.0 MIN Increments
OUTPUT RATING	10 A @ 250 VAC or 24 VDC, resistive
ACCURACY	Setting $\pm 2 \%$ or $\pm 50 \mathrm{mSEC}$; whichever is greater
	Repeat $\pm 0.1 \%$ or $\pm 8.3 \mathrm{mSEC}$; whichever is greater
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
SUPPLY VOLTAGE	$\begin{aligned} & 12,24,48,120 \text { or } 240 \mathrm{VAC}, \\ & 50 / 60 \mathrm{~Hz} ; \text { or } \mathrm{DC} ; \pm 10 \% \end{aligned}$

FALSE TRANSFER	No
REVERSE	Yes
POLARITY	
PROTECTED	
POWER	3 VA, approximately
REQUIRED	
DUTY CYCLE	Continuous
TEMPERATURE	Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage -49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
LIFE	Mechanical 10 million operations, minimum
EXPECTANCY	Electrical 100,000 Operations @ rated
	load

INDICATORS	LED glows when relay is energized.
ISOLATION	1,500 volts, input/output
WEIGHT	0.4 lbs.

OPERATION

When supply voltage is applied to the input, the OFF time (T1) begins. Upon completion of the OFF time, the relay energizes and the ON time (T2) begins. Upon completion of the ON time, the relay de-energizes and one cycle is complete. This OFF/ON cycling continues until supply voltage is removed from the input. The OFF/ ON time periods are independently selectable within the same range.

DIP SWITCH OPERATION

\qquad
RANGE "E"

Digital selection of the time delay is accomplished by the use of ten (10) binary switches, each marked with a time increment. The time periods, of which there are five (5) ranges, represented by each switch in the ON position is added together to obtain the desired time delay. No more trial-by-error adjustments.

WIRING

MODEL NUMBER

OPERATION

When supply voltage is applied to the input, the relay energizes and ON time (T1) begins. Upon completion of the ON time, the relay de-energizes and the OFF time (T2) begins. Upon completion of the OFF time, the relay energizes and one cycle is complete. This ON/OFF cycling continues until supply voltage is removed from the input. The ON/OFF delay periods are independently selectable within the same range.

DIP SWITCH OPERATION

Digital selection of the time delay is accomplished by the use of ten (10) binary switches, each marked with a time increment. The time periods, of which there are five (5) ranges, represented by each switch in the ON position is added together to obtain the desired time delay. No more trial-by-error adjustments.

WIRING

DIMENSIONS

MODEL NUMBER

TIME DELAY RANGE

0.1 to 102.3 SEC in 0.1 SEC Increments	A	
1.0 to 1,023 SEC in 1.0 SEC Increments	B	
10 to 10,230 SEC in 10 SEC Increments	C	
0.1 to 102.3 MIN in 0.1 MIN Increments	D	
1.0 to 1,023 MIN in 1.0 MIN Increments	E	
HOUSING		A

Repeat Cycle-ON Time First DIP Switch TDR

SPECIFICATIONS

time delay range

Flasher DIP Switch TDR

SPECIFICATIONS

time delay range

A	0.1 to 102.3 SEC in 0.1 SEC Increments
B	1.0 to 1,023 SEC in 1.0 SEC Increments
C	10 to 10,230 SEC in 10 SEC Increments
D	0.1 to 102.3 MIN in 0.1 MIN Increments
E	1.0 to 1,023 MIN in 1.0 MIN Increments
OUTPUT RATING	10 A @ 250 VAC or 24 VDC, resistive
ACCURACY S	Setting $\pm 2 \%$ or $\pm 50 \mathrm{mSEC}$; whichever is greater Repeat $\pm 0.1 \%$ or $\pm 8.3 \mathrm{mSEC}$; whichever is greater
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
SUPPLY VOLTAGE	$\begin{aligned} & 12,24,48,120 \text { or } 240 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} ; \text { or } \mathrm{DC} ; \pm 10 \% \end{aligned}$
FALSE TRANSFER	ER No
REVERSE POLARITY PROTECTED	Yes
POWER REQUIRED	3 VA, approximately
DUTY CYCLE	Continuous
TEMPERATURE RATING	Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
	Storage -49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
LIFE EXPECTANCY	Mechanical 10 million operations, minimum
	$\begin{array}{ll}\text { Electrical } & \begin{array}{l}100,000 \\ \text { load }\end{array}\end{array}$
INDICATORS	LED glows when relay is energized.
ISOLATION	1,500 volts, input/output
WEIGHT	0.35 lbs .

OPERATION

When supply voltage is applied to the input, the OFF time (T1) begins. Upon completion of the OFF time, the relay energizes and the ON time (T2) begins. Upon completion of the ON time, the relay de-energizes and one cycle is complete. This OFF/ON cycling continues until supply voltage is removed from the input. The OFF time always equals the ON time.

DIP SWITCH OPERATION

\qquad

Digital selection of the time delay is accomplished by the use of ten (10) binary switches, each marked with a time increment. The time periods, of which there are five (5) ranges, represented by each switch in the ON position is added together to obtain the desired time delay. No more trial-by-error adjustments.

WIRING

DIMENSIONS

MODEL NUMBER

OPERATION

The TBU Series offers the accuracy of DIP SWITCH delay ranges "A" through " E " as well as the user programmable model, DIP SWITCH delay range " P," with 4 different ranges obtainable by either leaving 2 designated terminals unconnected or by connecting them to the appropriate terminals as shown on the next page. The 6 most common modes of operation are easily selected by the use of one or more jumpers applied externally between designated base pins as outlined on the next page. These features, coupled with 6 most popular supply voltages, make this timer one of the most versatile and cost effective Time Delay Relays available today. The CMOS digital circuitry provides high accuracy, repeatability and fast reset times.

DIP SWITCH OPERATION

Digital selection of the time delay is accomplished by the use of ten (10) binary switches, each marked with a time increment. The time periods, of which there are five (5) ranges, represented by each switch in the ON position is added together to obtain the desired time delay. No more trial-by-error adjustments.

WIRING

DIMENSIONS

SPDT 11 Pin Plug-in RB-11/PF113A

MODEL NUMBER

MODEL NUMBER TBU				A
CONTROL VOLTAGE				
12 Volts DC	12	D		
24 Volts AC/DC	24	A		
48 Volts DC	48	D		
120 Volts AC/DC	120	A		
240 Volts AC	240	A		
TIME DELAY RANGE				
0.1 to 102.3 SEC in 0.1 SEC Increments			A	
1.0 to 1,023 SEC in 1.0 SEC Increments			B	
10 to 10,230 SEC in 10 SEC Increments			C	
0.1 to 102.3 MIN in 0.1 MIN Increments			D	
1.0 to 1,023 MIN in 1.0 MIN Increments			E	
Four (4) Programmable Ranges (TBU only)			P	
HOUSING				A

Programmable Multi-Mode DIP switch TDR

SPECIFICATIONS

TIME DELAY RANGE

A 0.1 to 102.3 SEC in 0.1 SEC Increments	
B	1.0 to 1,023 SEC in 1.0 SEC Increments
C	10 to 10,230 SEC in 10 SEC Increments
D	0.1 to 102.3 MIN in 0.1 MIN Increments
E	1.0 to 1,023 MIN in 1.0 MIN Increments
RATING	
ACCURACYS is	Setting $\pm 2 \%$ or $\pm 50 \mathrm{mSEC}$; whichever is greater
	Repeat $\pm 0.1 \%$ or $\pm 8.3 \mathrm{mSEC}$; whichever is greater
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
SUPPLY VOLTAGE	$\begin{aligned} & 12,24,48,120 \text { or } 240 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} ; \text { or } \mathrm{DC} ; \pm 10 \% \end{aligned}$
FALSE TRANSFER	No
REVERSE POLARITY PROTECTED	Yes
POWER REQUIRED	3 VA , approximately
DUTY CYCLE	Continuous
TEMPERATURE RATING	Operate 32° to $131{ }^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
	Storage -49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
LIFE EXPECTANCY	Mechanical 10 million operations, minimum
	Electrical100,000 Operations @ rated load
INDICATORS	LED glows when relay is energized.
ISOLATION	1,500 volts, input/output
WEIGHT	0.35 lbs .

TIME DELAY RANGE "P" SELECTION

CAUTION: DO NOT PROGRAM WITH POWER ON! WIRE FOR ONE TIMING RANGE ONLY!

4 different ranges can be obtained by either leaving 2 designated terminals unconnected or by connecting them to the appropriate terminals shown below. Because the Time Delay programming is the same regardless of the mode of operation only the wiring connections affecting the Time Delay are shown here.

Jumper 9 to 10 .
0.1 to 102.3 seconds
in 0.1 SEC increments

Jumper 8 to 10 .
0.4 to 409.2 seconds
in 0.4 SEC increments

Jumper 8 and 9 to 10 .
0.05 to 54.6 minutes in .05 MIN increments

No Connections
to 8,9 or 10
0.42 to 436.5 minutes
in 0.42 MIN increments

MODE OF OPERATION SELECTION - WIRE FOR ONE MODE ONLY!

INTERVAL: When supply voltage is applied to the input terminals, the relay energizes and the time delay begins. Upon completion of the delay period, the relay de-energizes. Reset during or after the delay period is accomplished by removal of the supply voltage.

ON-DELAY: The time delay begins when supply voltage is applied to the input. Upon completion of the delay period, the relay energizes. Reset during or after the delay period is accomplished by removal of the supply voltage. The timer will not false transfer if supply voltage is removed prior to completion of the delay period.

OFF-DELAY: Supply voltage is continuously applied to the input. An external isolated switch controls the timer. When closed, the relay energizes. Opening the switch initiates the delay period. Upon completion of the delay period, the relay de-energizes. If the control switch recloses during the delay period, the relay remains energized and the timer resets to zero.

SINGLE-SHOT: Supply voltage is continuously applied to the input. An external isolated switch initiates the time delay. When closed (momentary or maintained), the relay energizes and the delay period begins. Upon completion of the delay period, the relay de-energizes.

FLASHER-OFF TIME FIRST: When supply voltage is applied to the input, the OFF time (T1) begins. Upon completion of the OFF time, the relay energizes and the ON time (T2) begins. Upon completion of the ON time, the relay de-energizes and one cycle is complete. This OFF/ON cycling continues until supply voltage is removed from the input. The OFF time always equals the ON time.

FLASHER-ON TIME FIRST: When supply voltage is applied to the input, the relay energizes and ON time (T1) begins. Upon completion of the ON time, the relay de-energizes and the OFF time (T2) begins. Upon completion of the OFF time, the relay energizes and one cycle is complete. This ON/OFF cycling continues until supply voltage is removed from the input. The ON time always equals the of time.

OPERATION

When voltage is applied to the input terminals, the relay energizes and the time delay begins. Upon completion of the delay period, the relay de-energizes. Reset during or after the delay period is accomplished by removal of the input voltage.

WIRING

DPDT Octal Plug-in RB-08/PF083A

DPDT 11 Pin Plug-in External Resistor Adjustable RB-11/PF113A

DPDT Blade Plug-in 70-463-1

DIMENSIONS

Octal and 11 Pin Plug-in

MODEL NUMBER

MODEL NUMBER T		*B		A			
SERIES							
Relay Output	D						
Relay Output with CSA	U*						
SUPPLY VOLTAGE							
24 VAC or DC			24				
110/120 VAC or DC			120				
TYPE OF OPERATION							
Knob Adjustable					K		
Lock Nut Adjustable					L		
Fixed					F		
External Resistor Adjustable					$\mathrm{R}^{* *}$		
ENCLOSURE STYLE							
8 or 11-pin Round Plug-in						A	
Blade Plug-in						B	
Non UL 12-pin Plug-in						C	

DELAY PERIOD

See page 77 for standard ranges available
Example: TUB-120-AKA-900-Interval on operate, 120 Volts AC or DC, knob adjustable from 9 to 900 seconds, 8-pin octal plug-in, UL recognized and CSA approved.
Notes:* The TUB series is offered in 120 Volts, style A enclosure only with optional types of operation "K", "L", or "F" CSA certified, File \# LR40123**

TDB models using the " R " option are not UL Recognized. The "R"option is not offered in the TUB series or the style B enclosure. TDB models using " F ", " K ", or " L " options and in the 8 -pin octal plug is only available in 24 -volts.

Interval Relay Output

SPECIFICATIONS

TIMING RANGES

Virtually unlimited. See page 77 for standard ranges available.

OUTPUT RATING	DPDT, 10 A @ 250 VAC or 24 VDC, resistive; 211 VA @120 VAC,inductive
TIMING	Minimum Setting +0-20\%
TOLERANCES	Maximum Setting $\pm 10 \%$;
REPEATABILITY 1% maximum; no first cycle effect	
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
RECYCLE TIME 40 mSEC	
SUPPLY	24 or 120 VAC or VDC, $50 / 60 \mathrm{~Hz}$; $\pm 10 \%$
VOLTAGE	(TUB Series available in 120 Volts only)
FALSE TRANSFER No	
REVERSE Yes POLARITY PROTECTED	
CONSUMPTION	
DUTY CYCLE	Continuous
TEMPERATURE RATING	O Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
	Storage $\quad-49^{\circ}$ to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
LIFE EXPECTAI	NCY Mechanical 10 million operations (minimum)
	Electrical 100,000 operations
	@ rated load

WEIGHT 5 oz .

OPERATION

The time delay begins when power is applied to the input. Upon completion of the delay period, the relay energizes. Reset during or after the delay period is accomplished by removal of the input voltage. The TDC/ TUC will not false transfer if voltage is removed prior to completion of the delay period. A fast recycle time permits accurate, high speed, continuous operation.

On-Delay Relay Output

SPECIFICATIONS

TIMING RANGES

Virtually unlimited. See page 77 for standard ranges available.

MODEL NUMBER

DELAY PERIOD

See page 77 for standard ranges available
Example: TUC-120-AKA-900-Interval on operate, 120 Volts AC or DC, knob adjustable from 9 to 900 seconds, 8-pin octal plug-in, UL recognized and CSA approved.

Notes:* The TUC series is offered in 120 Volts, style A enclosure only with optional types of operation "K", "L", or "F" CSA certified, File \#LR40123** TDC models using the " R " option are not UL Recognized. The " R " option is not offered in the TUC series or the style B enclosure. TDC models using " F ", " K ", or "L" options and in the 8 -pin octal plug are only available in 24 -volts.

OPERATION

Voltage is continuously applied to the input. An external isolated switch controls the timer. When closed, the relay energizes. Opening the switch initiates the delay period. Upon completion of the delay period, the relay de-energizes. If the control switch recloses during the delay period, the relay remains energized and the timer resets to zero.

Off-Delay Relay Output

REPEATABILITY 1% maximum; no first cycle effect

| RESET TIMES | Before Time Out $\quad 100 \mathrm{mSEC}$ |
| :--- | :--- | :--- |
| | After Time Out $\quad 50 \mathrm{mSEC}$ |
| RECYCLE TIME | 40 mSEC |
| SUPPLY | 24 or 120 VAC or VDC, $50 / 60 \mathrm{~Hz} ; \pm 10 \%$ |
| VOLTAGE | (TUD Series available in 120 Volts only) |

FALSE TRANSFER	No
REVERSE	Yes
POLARITY	
PROTECTED	
POWER	3 watts (approximately)
CONSUMPTION	
DUTY CYCLE	Continuous
TEMPERATURE	Operate $\quad 32^{\circ}$ to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage $\quad-49^{\circ}$ to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $+85^{\circ}$

LIFE EXPECTANCY Mechanical 10 million operations (minimum)
Electrical 100,000 operations @ rated load
WEIGHT
6 oz.

Example: TDD-120-AKA-600—Delay on Release, 120 Volts AC or DC, knob adjustable from 6 to 600 seconds, 11-pin octal plug-in, UL Recognized.
Notes:* The TUD series is offered in 120 Volts, octal plug-in style A enclosure only with optional types of operation "K", "L", or "F" CSA certified: File \#LR40123** and UL Recognized.

TDD's using the " R " option are not UL Recognized. The " R " option is NOT offered in the TUD series or the style B enclosure.

OPERATION
Voltage is continuously applied to the input. An external isolated switch controls the timer. When closed (momentary or maintained), the relay energizes and the delay period begins. Upon completion of the delay period, the relay de-energizes.

WIRING

Single-Shot Relay Output

SPECIFICATIONS

 TIMING RANGESVirtually unlimited. See page 77 for standard ranges available.

OUTPUT	DPDT, 10 A @ 250 VAC or 24 VDC, resistive;	
RATING	211 VA @ 120 VAC, inductive	
TIMING	Minimum Setting	
TOLERANCES	$+020 \%$	
	Maximum Setting	$\pm 10 \% ;$

REPEATABILITY 1% maximum; no first cycle effect
RESET TIMES Before Time Out 100 mSEC
RECYCLE TIME 40 mSEC
SUPPLY $\quad 24$ or 120 VAC or VDC, $50 / 60 \mathrm{~Hz} ; \pm 10 \%$
VOLTAGE (TUE Series available in 120 Volts only)
FALSE TRANSFER No
REVERSE Yes
POLARITY
PROTECTED
POWER 3 watts (approximately)
CONSUMPTION

DUTY CYCLE	Continuous	
TEMPERATURE	Operate	32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage	-49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

LIFE EXPECTANCY Mechanical 10 million operations (minimum)
Electrical 100,000 operations @ rated load

WEIGHT 4.5 oz.

For UL/CSA Approved version specify TUE Series of On-Delay Relay Output Timers.

MODEL NUMBER

MODEL NUMBER T		E		A			
SERIES							
Relay Output	D						
Relay Output with CSA	U*						
SUPPLY VOLTAGE							
24 VAC or DC			24				
110/120 VAC or DC			120				
TYPE OF OPERATION							
Knob Adjustable					K		
Lock Nut Adjustable					L		
Fixed					F		
External Resistor Adjustable					R**		
ENCLOSURE STYLE							
8-pin or 11-pin Round Plug-in							A
Blade Plug-in						B	
DELAY PERIOD							

Example: TUE-120-AKA-900—Single Shot, 120 Volts AC or DC, knob adjustable from 9 to 900 seconds, 8-pin octal plug-in. UL recognized and CSA approved.
Notes:* The TUE series is offered in 120 Volts, octal plug-in (figure 23)
style A enclosure only with optional types of operation "K", "L", or "F"
CSA certified: File \#LR40123
**TDE's using the " R " option are not UL Recognized. The "R" option is NOT offered in the TUE series or the style B enclosure.

OPERATION

Application of voltage to the input of the timer initiates the OFF time. Upon completion of the OFF time, the relay energizes and the ON time begins. Upon completion of the ON time, the relay de-energizes and one cycle is completed. This OFF/ON cycling continues until voltage is removed from the input. The OFF/ON time periods are independently adjustable.

WIRING

DPDT Octal Plug-in RB-08/PF083A

DPDT Blade Plug-in
70-463-1

DIMENSIONS (INCHES)

MODEL NUMBER

MODEL NUMBER	TDF		A			
SUPPLY VOLTAGE						
24 VAC or DC		24				
110/120 VAC or DC		120				
TYPE OF OPERATION						
Lock Nut Adjustable				L		
Fixed				F		
ENCLOSURE STYLE						
8-pin octal plug-in					A	
Blade plug-in					B	
DELAY PERIOD						

Example: TDF-120-ALA-300—Repeat cycle, 120 Volts AC or DC, lock nut adjustable from 3 to 300 seconds, 8-pin octal plug-in, UL recognized.

SPECIFICATIONS

timing ranges
Virtually unlimited. See page 77 for standard ranges available.

OUTPUT	DPDT, $10 \mathrm{~A} @ 250$ VAC or 24 VDC, resistive;	
RATING	211 VA @ 120 VAC, inductive	
TIMING	Minimum Setting	$+0-20 \%$
TOLERANCES	Maximum Setting	$\pm 10 \% ;$
REPEATABILITY	1% maximum; no first cycle effect	
RESET TIMES	Before Time Out	100 mSEC
	After Time Out	50 mSEC

RECYCLE TIME 40 mSEC

SUPPLY $\quad 24$ or 120 VAC or VDC, $50 / 60 \mathrm{~Hz} ; \pm 10 \%$ VOLTAGE

FALSE TRANSFER	No
REVERSE	Yes
POLARITY	
PROTECTED	
POWER CONSUMPTION	3 watts (approximately)
TEMPERATURE Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$ RATING Storage -49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	

LIFE EXPECTANCY Mechanical 10 million operations (minimum)
Electrical 100,000 operations @ rated load
WEIGHT $\quad 6.4 \mathrm{oz}$.

Repeat Cycle-ON Time First Relay Output

SPECIFICATIONS

TIIING RANGES
Virtually unlimited. See page 77 for standard ranges available.

OUTPUT RATING	DPDT, 10 A @ 250 VAC or 24 VDC, resistive; 211 VA @ 120 VAC, inductive
TIMING	Minimum Setting $+0-20 \%$
TOLERANCES	Maximum Setting $\pm 10 \%$;
REPEATABILITY 1\% maximum; no first cycle effect	
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
RECYCLE TIME 40 mSEC	
SUPPLY VOLTAGE	24 or 120 VAC or VDC, $50 / 60 \mathrm{~Hz} ; \pm 10 \%$
FALSE TRANSFER No	
POLARITY PROTECTED	
POWER CONSUMPTION	3 watts (approximately)
DUTY CYCLE	Continuous
TEMPERATURE	O Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage $\quad-49^{\circ}$ to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
LIFE EXPECTAN	NCY Mechanical 10 million operations (minimum)
	$\begin{array}{ll}\text { Electrical } & 100,000 \text { operations } \\ & @ \text { rated load }\end{array}$
WEIGHT	6.4 oz.

OPERATION

Application of voltage to the input of the timer energizes the relay and initiates the ON time. Upon completion of the ON time, the relay deenergizes and the OFF time begins. Upon completion of the OFF time, the relay energizes and one cycle is completed. This ON/OFF cycling continues until voltage is removed from the input. The ON/OFF time periods are independently adjustable.

WIRING

DPDT Octal Plug-in
DPDT Blade Plug-in 70-463-1

DIMENSIONS

(INCHES)

Octal Pin Plug-in

MODEL NUMBER

MODEL NUMBER	TDG		A			
SUPPLY VOLTAGE						
24 VAC or DC		24				
110/120 VAC or DC		120				
TYPE OF OPERATION						
Knob Adjustable				K		
Lock Nut Adjustable				L		
Fixed				F		
ENCLOSURE STYLE						
8-pin octal plug-in					A	
Blade plug-in					B	
DELAY PERIOD						
See page 77 for standard ranges available						

Example: TDG-120-AKA-300 - Repeat cycle , On time first, 120 Volts AC or DC , Knob adjustable, both delays independantly adjustable from 3 seconds to 300 seconds, 8 pin octal plug-in.

OPERATION

Application of voltage to the input of the timer initiates the OFF time. Upon completion of the OFF time, the relay energizes and the ON time begins. Upon completion of the ON time, the relay de-energizes and the cycle is complete. Reset during or after the time periods is accomplished by removal of the input voltage. The OFF/ON time periods are independently adjustable.

WIRING

DPDT Octal Plug-in RB-08/PF083A

DPDT Blade Plug-in 70-463-1

DIMENSIONS

(INCHES)

MODEL NUMBER

MODEL NUMBER	TDH		A			
SUPPLY VOLTAGE						
24 VAC or DC		24				
110/120 VAC or DC		120				
TYPE OF OPERATION						
Knob Adjustable				K		
Lock Nut Adjustable				L		
Fixed				F		
ENCLOSURE STYLE						
8 -pin octal plug-in					A	
Blade plug-in					B	
DELAY PERIOD						
See page 77 for stan						

Example: TDH-120-ALA-300—Delayed interval, 120 Volts AC or DC, both delays are independently adjustable from 3 to 300 seconds, 8-pin octal plug-in, UL Recognized.

Delayed Interval Relay Output

SPECIFICATIONS

TIMING RANGES
Virtually unlimited. See page 77 for standard ranges available.

OUTPUT RATING	DPDT, 10 A @ 250 VAC or 24 VDC, resistive; 211 VA @ 120 VAC, inductive
TIMING	Minimum Setting $+0-20 \%$
TOLERANCES	Maximum Setting $\pm 10 \%$;
REPEATABILITY 1\% maximum; no first cycle effect	
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
RECYCLE TIME 40 mSEC	
SUPPLY VOLTAGE	24 or 120 VAC or VDC, $50 / 60 \mathrm{~Hz}$; $\pm 10 \%$
FALSE TRANSFER No	
REVERSE Yes POLARITY PROTECTED	
POWERCONSUMPTION	
TEMPERATURE	O Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage $\quad-49^{\circ}$ to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
LIFE EXPECTANC	NCY Mechanical 10 million operations (minimum)
	Electrical 100,000 operations @ rated load
WEIGHT	6.4 oz.

OPERATION

Voltage is continuously applied to the input. An external isolated switch controls the timer. When closed (momentary or maintained), the OFF time begins. Upon completion of the OFF time, the relay energizes and the ON time begins. Upon completion of the ON time, the relay deenergizes and the cycle is complete. Reset is accomplished by reclosing the control switch after the timing cycle has completed. The OFF/ON time periods are independently adjustable.

Delayed Single Shot Relay Output
WIRING

DIMENSIONS (INCHES)

MODEL NUMBER

MODEL NUMBER	TDI		A			
SUPPLY VOLTAGE						
24 VAC or DC		24				
110/120 VAC or DC		120				
TYPE OF OPERATION						
Knob Adjustable				K		
Lock Nut Adjustable				L		
Fixed				F		
ENCLOSURE STYLE						
11-pin Round plug-in					A	
Blade plug-in					B	
DELAY PERIOD						
See page 77 for standard ranges available						

Example: TDI-120-ALA-300—Delayed single shot, 120 Volts AC or DC, lock nut adjustable from 3 to 300 seconds, 11-pin octal plug-in, UL Recognized.

OPERATION

Voltage is continuously applied to the input. An external isolated switch controls the timer. When closed, the ON delay (T1) begins. Upon completion, the relay energizes. When the switch opens, the OFF delay (T2) begins. Upon completion, the relay de-energizes and the cycle is complete. Reset is accomplished by reclosing the control switch after the timing cycle has completed. If the switch opens during the ON delay mode, the relay will remain de-energized and (T1) will reset. If the switch is reclosed during the OFF delay mode, the relay will remain energized and (T 2) will reset. Both delay periods are independently adjustable.

WIRING

DIMENSIONS (INCHES)

MODEL NUMBER

MODEL NUMBER	TDJ		A			
SUPPLY VOLTAGE						
24 VAC or DC		24				
110/120 VAC or DC		120				
TYPE OF OPERATION						
Knob Adjustable				K		
Lock Nut Adjustable				L		
Fixed				F		
ENCLOSURE STYLE						
11-pin Round Plug-in					A	
Blade Plug-in					B	
DELAY PERIOD						

Example: TDJ-120-ALA-300—Delay on Operate/Delay on Release, 120 Volts AC or DC, lock nut adjustable from 3 to 300 seconds, 11-pin octal plug-in, UL recognized.

SPECIFICATIONS

TIMING RANGES
Virtually unlimited. See page 77 for standard ranges available.

OUTPUT	DPDT, $10 \mathrm{~A} @ 250$ VAC or 24 VDC, resistive;	
RATING	211 VA @ 120 VAC, inductive	
TIMING	Minimum Setting	$+0-20 \%$
TOLERANCES	Maximum Setting	$\pm 10 \% ;$
REPEATABILITY	1% maximum; no first cycle effect	
RESET TIMES	Before Time Out	100 mSEC
	After Time Out	50 mSEC

RECYCLE TIME 40 mSEC	
SUPPLY VOLTAGE	24 or 120 VAC or VDC, $50 / 60 \mathrm{~Hz} ; \pm 10 \%$

FALSE TRANSFER	No	
REVERSE	Yes	
POLARITY		
PROTECTED		
POWER	3 watts (approximately)	
CONSUMPTION		
DUTY CYCLE	Continuous	
TEMPERATURE	Operate	32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage	-49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
LIFE EXPECTANCY	Mechanical	10 million operations (minimum)
	Electrical	100,000 operations
		@ rated load
WEIGHT	6.4 oz.	

Flasher Relay Output

SPECIFICATIONS

TIMING RANGES

Virtually unlimited. See page 77 for standard ranges available.

OUTPUT DP	DPDT, 10 A @ 250 VAC or 24 VDC, resistive;	
RATING 21	211 VA @ 120 VAC, inductive	
DUTY 50\%	50\%	
CYCLE		
SUPPLY 24	24 or 120 VAC or VDC, $50 / 60 \mathrm{~Hz}$; $\pm 10 \%$	
VOLTAGE		
FALSE TRANSFER No		
REVERSE	Yes	
POLARITY		
PROTECTED		
POWER	3 watts (approximately)	
CONSUMPTION		
TEMPERATURE	E Operate	32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage	-49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
LIFE EXPECTANCY	NCY Mechanical	10 million operations (minimum)
	Electrical	100,000 operations
		@ rated load
WEIGHT	5.6 oz.	

OPERATION

When power is applied to the input, the OFF time begins. Upon completion of the OFF time, the relay energizes and the ON time begins. Upon completion of the ON time, the relay de-energizes and one cycle is complete. This OFF/ON cycling continues until the voltage is removed from the input. THE OFF TIME ALWAYS EQUALS THE ON TIME.

WIRING

DPDT Octal Plug-in DPDT Blade Plug-in 70-463-1

DIMENSIONS (INCHES)

Octal Pin Plug-in

MODEL NUMBER

MODEL NUMBER	TDL		A			
SUPPLY VOLTAGE						
24 VAC or DC		24				
110/120 VAC or DC		120				
TYPE OF OPERATION						
Knob Adjustable				K		
Lock Nut Adjustable				L		
Fixed				F		
ENCLOSURE STYLE						
8 -pin octal plug-in					A	
Blade plug-in					B	
DELAY PERIOD						
See page 77 for stand		es ava				

Example: TDL-120-ALA-300—Flasher, 120 Volts AC or DC, lock nut adjustable from 3 to 300 seconds, 8-pin octal plug-in, UL recognized.

OPERATION

When voltage is applied to the input, the internal relay energizes and the ON time (T 1) begins. Upon completion of the ON time, the relay de-energizes and the OFF time (T2) begins. At the completion of the OFF time, one ON/OFF cycle is completed. This cycling action continues until voltage is removed from the input. The ON/OFF ratio is adjustable from 0 to 100 percent of time base. 0% is $0 \mathrm{FF} ; 100 \%$ is 0 N . Reset is accomplished by interrupting the input voltage.

WIRING

DIMENSIONS (INCHES)

Octal Pin Plug-in

MODEL NUMBER

MODEL NUMBER	TDP		A			
SUPPLY VOLTAGE						
24 VAC or DC		24				
110/120 VAC or DC		120				
TYPE OF OPERATION						
Knob Adjustable				K		
Lock Nut Adjustable				L		
ENCLOSURE STYLE						
8-pin octal plug-in					A	
Blade plug-in					B	
TIME BASE						
60 sec						060
300 sec						300
600 sec						600
900 sec						900
30 min						30 m
60 min						60m

Example: TDP-120-AKA-300—Percentage on/off, 120 Volts AC or $D C$, knob adjustable, time range from 3 to 300 seconds, 8 -pin octal plug-in.

SPECIFICATIONS

OUTPUT	DPDT, $10 \mathrm{~A} @ 250$ VAC or 24 VDC, resistive;
RATING	$211 \mathrm{VA} @ 120 \mathrm{VAC}$, inductive
TIME BASE	$\pm 10 \%$
TOLERANCES	

REPEATABILITY	0.5% typical
ADJUSTABILITY	0 to 100% of time base
TIME BASE	See ordering information
SUPPLY	24 or 120 VAC or VDC, $50 / 60 \mathrm{~Hz} ; \pm 10 \%$
VOLTAGE	

FALSE TRANSFER	No	
REVERSE	Yes	
POLARITY		
PROTECTED		
POWER	2 watts (approximately)	
CONSUMPTION		
TEMPERATURE	Operate	32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage	-49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

LIFE EXPECTANCY Mechanical 10 million operations (minimum)
Electrical 100,000 operations
@ rated load
WEIGHT 5.6 oz.

True OFF-Delay Relay Output

SPECIFICATIONS

OUTPUT	DPDT, 10 A @ 250 VAC or 24 VDC, resistive;	
RATING	211 VA @ 120 VAC, inductive	
TIME	Minimum Setting	$+0-20 \%$
TOLERANCES	Maximum Setting	$\pm 10 \%$

REPEATABILITY	1%
RESET TIMES	0.5 seconds
SUPPLY	24 or $110 / 120$ or $208 / 240 \mathrm{VAC}$,
VOLTAGE	$50 / 60 \mathrm{~Hz}$, or VDC; and 48 VDC; $\pm 10 \%$

FALSE TRANSFER No
REVERSE Yes
POLARITY
PROTECTED

POWER CONSUMPTION	3 watts (approximately)	
TEMPERATURE	Operate	32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage	-49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

LIFE EXPECTANCY Mechanical 10 million operations (minimum) Electrical 100,000 operations @ rated load

WEIGHT 4.5 oz .

DIMENSIONS (INCHES)

Octal Pin Plug-in

OPERATION

When voltage is applied to the input, the relay energizes. When voltage is removed, the OFF delay begins. Upon completion of the delay period, the relay de-energizes. Reset is accomplished by reapplying voltage to the input terminals. NOTE: If voltage is reapplied during the delay period, the relay remains picked up and the timer resets to zero. VOLTAGE MUST BE APPLIED FOR A MINIMUM OF 0.5 SECONDS TO ASSURE PROPER OPERATION.

WIRING

DPDT Octal Plug-in RB-08/PF083A

DPDT Blade Plug-in 70-463-1

MODEL NUMBER

MODEL NUMBER	TDT					
SUPPLY VOLTAGE						
24 VAC or DC		24				
48 Volts DC		48				
110/120 VAC or DC		120				
208/240 VAC or DC		240				
TYPE OF VOLTAGE						
$A C$ and $D C$ operation			A			
DC operation only (D Designation used for 48 V model only)			D			
TYPE OF OPERATION						
Lock Nut Adjustable				L		
Fixed				F		
ENCLOSURE STYLE						
Blade plug-in					B	
DELAY PERIOD						
$010=.1 \text { to } 10 \mathrm{SEC}$						010
$030=.3$ to 30 SEC						030
$060=.6$ to 60 SEC						060
$100=1$ to 100 SEC						100
$200=2$ to 200 SEC						200
$300=3$ to 300 SEC						300

Example: TDT-120-ALA-300—True off delay, 120 Volts AC or DC, Lock-nut adjustable, time range from 3 to 300 seconds, 8 -pin octal plug-in.

The TDU Series is one of the most versatile single timers available today. One model replaces forty-eight industry standard devices; 4 wide delay ranges $\times 6$ most common modes of operation $x 2$ supply voltages-since they will operate on both AC and DC. The CMOS digital circuitry provides high accuracy, repeatability and fast reset times. The heavy duty relays are rated for continuous operation at 10 amps . All programming is easily accomplished externally by using one or more jumpers between designated base pins-no trap doors to open, no switches to set, no disassembly required.

WIRING

DIMENSIONS (INCHES)

MODEL NUMBER

MODEL NUMBER	TDU				
SUPPLY VOLTAGE					
12 VDC		12	D		
24 VAC or DC		24	A		
48 VDC		48	D		
110/120 VAC or DC		120	A		
240 VAC		240	A		
TYPE OF OPERATION					
Knob Adjustable K					
Lock Nut Adjustable				L	
ENCLOSURE STYLE					
11-pin Round Plug-in					A
Blade Plug-in					B

Example: TDU-120-AKA—Multi mode, 120 Volts AC or DC, knob adjustable, 11-pin round plug-in, multi range . 15 seconds to 64 minutes.

Programmable Multi-Mode Relay Output

WEIGHT 5 oz .

TIMING RANGE SELECTION

CAUTION: DO NOT PROGRAM WITH POWER ON! WIRE FOR ONE TIMING RANGE ONLY!

4 different ranges can be obtained by either leaving 2 designated terminals unconnected or by connecting them to the appropriate terminals shown below. Because the Time Delay programming is the same regardless of the mode of operation only the wiring connections affecting the Time Delay are shown here.

OPERATION-WIRE FOR ONE MODE ONLY!

INTERVAL: When voltage is applied to the input terminals, the relay energizes and the time delay begins. Upon completion of the delay period, the relay de-energizes. Reset during or after the delay period is accomplished by removal of the supply voltage.

ON-DELAY: The time delay begins when power is applied to the input. Upon completion of the delay period, the relay energizes. Reset during or after the delay period is accomplished by removal of the input voltage. The timer will not false transfer if supply voltage is removed prior to completion of the delay period.
OFF-DELAY: Voltage is continuously applied to the input. An external isolated switch controls the timer. When closed, the relay energizes. Opening the switch initiates the delay period. Upon completion of the delay period, the relay de-energizes. If the control switch recloses during the delay period, the relay remains energized and the timer resets to zero.
SINGLE-SHOT: Voltage is continuously applied to the input. An external isolated switch controls the timer. When closed (momentary or maintained), the relay energizes and the delay period begins. Upon completion of the delay period, the relay de-energizes.
FLASHER—OFF TIME FIRST: When supply voltage is applied to the input, the OFF time begins. Upon completion of the OFF time, the relay energizes and the ON time begins. Upon completion of the ON time, the relay de-energized and one cycle is complete. This OFF/ON cycling continues until supply voltage is removed from the input. The OFF time always equals the ON time.

FLASHER—ON TIME FIRST: When power is applied to the input, the relay energizes and ON time begins. Upon completion of the ON time, the relay de-energizes and the OFF time begins. Upon completion of the OFF time, the relay energizes and one cycle is complete. This ON/OFF cycling continues until supply voltage is removed from the input. The ON time always equals the off time.

STANDARD DELAY RANGES AVAILABLE

The chart below shows the standard adjustable time delay ranges available. The part number suffix equals the maximum adjustable delay period of the timer. No letters following the suffix number indicates the delay period in seconds; an M indicates minutes; and an H indicates hours.

STANDARD DELAY RANGE CHART

PART NUMBER SUFFIX	MINIMUM SETTING	MAXIMUM SETTING
010	0.1 seconds	10 seconds
030	0.3 seconds	30 seconds
060	0.6 seconds	60 seconds
100	1 second	100 seconds
200	2 seconds	200 seconds
300	3 seconds	300 seconds
600	6 seconds	60 seconds
900	9 seconds	900 seconds
30 M	18 seconds	30 minutes
60 M	36 seconds	60 minutes
90 M	54 seconds	90 minutes
2 H	1.2 Minutes	2 hours
4 H	2.4 Minutes	4 hours
8 H	4.8 Minutes	8 hours
12 H	7.2 Minutes	12 hours
16 H	9.6 Minutes	16 hours
20 H	12 Minutes	20 hours
24 H	14.4 Minutes	24 hours

Longer delays available upon request. Consult Factory

EXTERNAL RESISTANCE SELECTION

On models specified as having the external resistor adjustability feature, the delay period is set by placing resistance across designated pins or terminals. One meg ohm resistance provides the maximum delay on all models. The minimum delay is obtained by jumping the terminals together.

The resistor or potentiometer chosen should be a $1 / 4$ watt or larger.
To determine the resistor value required for a specific time delay, use the following formula:
$R_{\text {ext }}=\left(T_{\text {des }} / T_{\text {max }}\right) \times 1000$
$\mathrm{R}_{\text {ext }}=$ Resistance value required
to obtain $\mathrm{T}_{\text {des }}$ (in K ohms)
$T_{\text {des }}=$ Desired time delay
$\mathrm{T}_{\text {max }}=$ Maximum delay period of the timer
Example: Model TDC-120-ARC-300; find the external resistance value required for a 240 second delay:
$R_{\text {ext }}=\frac{240}{300} \times 1000=800 \mathrm{~K}$ ohms

"FIXED" DELAY OPTION

Most ATC Diversified timers are available with the delay period factory preset ("fixed") for some specified duration. When this option is ordered, the part number should have an "F" in the Type of Operation designation: and the last digits should specify the desired time delay in seconds (S), minutes (M), or hours (H).
Example: TDC 120-AFA-30M—delay-on-operate, 120 Volts AC or DC, 8 -pin octal plug-in package with a 30 minute fixed delay.

OFF/ON DELAY TIMERS

Included in ATC Diversified's broad line of timers are six (6) models that feature independent OFF/ON delay adjustments. They are TDF, TDH, TDI, TSF, and TSH. Notice in the ordering information section on each of their respective pages the timing range is specified by a three (3) digit suffix. This indicates that both the OFF and ON delay periods have the same timing ranges. Example: TDF-120-ALA-300: Both OFF and ON delay periods are independently adjustable from 3 to 300 seconds.

In the event that two (2) separate delay ranges would be required, the part number is modified to add a slash(/) followed by three (3) more digits. Since the OFF delay (TI) is first in all models, it is specified first in the part number. Example: TDF-120-ALA-12H/30M: the OFF delay is adjustable from 7.2 minutes to 12 hours and the ON delay is adjustable from 18 seconds to 30 minutes.

NOTE: Combinations of various "types of operation" are available: fixed/adjustable, knob/lock nut, etc. Consult factory.

MODEL NUMBER

MODEL NUMBER	T							

NOTE: Not all time delays are available with each option shown above. The specific options for each timer type are described on their respective pages.

Interval Solid-State Output

OPERATION

When voltage is applied to the input terminals, the load energizes and the time delay begins. Upon completion of the delay period, the load de-energizes. Reset during or after the delay period is accomplished by removal of the input voltage. The TSA Series is a two input terminal device that connects in series with the input and load.

WIRING

DIMENSIONS

MODEL NUMBER

Example: TSA-100-ARC-100—Interval on operate, 24 to 240 VAC, external resistor adjustable from 1 to 100 seconds.

OPERATION

When voltage is applied to the input terminals, the load energizes and the time delay begins. Upon completion of the delay period, the load de-energizes. Reset during or after the delay period is accomplished by removal of the input voltage. The Series TSB is a three input terminal device.

WIRING

DIMENSIONS
(INCHES)

MODEL NUMBER

MODEL NUMBER	TSB		A		C	
SUPPLY VOLTAGE						
24 VAC		24				
120 VAC		120				
240 VAC		240				
TYPE OF OPERATION						
Fixed (Factory Preset)				F		
External Resistor Adjustable; See page 77 for resistor selection.				R		
Screwdriver Adjustable (Not available with 240V)					S	

DELAY PERIOD

See page 77 for standard ranges available
Example: TSB-120-ARC-100-Interval on operate, 120 Volts AC, external resistor adjustable from 1 to 100 seconds.
Note: *The TSB series is only UL recognized in the 120 VAC model.

Interval Solid-State Output

SPECIFICATIONS

TIMING RANGES	Virtually unlimited. See page 77 for standard ranges available.
OUTPUT RATING	Solid-state, SPST-N.O. 1 amp resistive; 1 amp 25VA @ 24VAC 1 amp 125VA @ 120VAC . $5 \mathrm{amp} 125 \mathrm{VA} @ 240$ VAC
TIMING	Minimum Setting $+0-20 \%$
TOLERANCES	Maximum Setting $\pm 10 \%$
REPEATABILITY	1\% maximum; no first cycle effect
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC

RECYCLE TIME 40 mSEC

SUPPLY VOLTAGE 24 to $240 \pm 10 \%$ VAC, $50 / 60 \mathrm{~Hz}$
FALSE TRANSFER No
ENCLOSURE \quad Surface mounted; totally encapsulated with a high quality epoxy for environmental protection

TEMPERATURE	Operate	32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage	-49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
TERMINATIONS	$1 / 4$ " quick disconnect terminals	
WEIGHT	NET: 1.28 oz Shipping: 1.6 oz.	

ON-Delay Solid State Output

SPECIFICATIONS

TIMING RANGES	Virtually unlimited. See page 77 for standard ranges available.
OUTPUT RATING	Solid-state, SPST-N.0. 1 amp resistive; 1 amp 25VA @ 24VAC 1 amp 125VA @ 120VAC . $5 \mathrm{amp} 125 \mathrm{VA} @ 240$ VAC
TIMING	Minimum Setting $+0-20 \%$
TOLERANCES	Maximum Setting $\pm 10 \%$
REPEATABILITY	1\% maximum; no first cycle effect
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
RECYCLE TIME	40 mSEC
SUPPLY VOLTAGE	12 to 240 VDC, 24 to 240 VAC $\pm 10 \%, 50 / 60 \mathrm{~Hz}$
FALSE TRANSFER	No
ENCLOSURE	Surface mounted; totally encapsulated with a high quality epoxy for environmental protection.
TEMPERATURE	Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage $\quad-49^{\circ}$ to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
TERMINATIONS	1/4" quick disconnect terminals
WEIGHT	NET: 1.28 oz Shipping: 1.6 oz .

OPERATION

The time delay begins when power is applied to the timer. Upon completion of the delay period, the load energizes. Reset during or after the delay period is accomplished by removal of the input voltage. The TSC will not false transfer if voltage is removed prior to completion of the delay period. A fast recycle time permits accurate, high speed, continuous operation.

WIRING

Example: TSC-100-ARC-100—Delay on operate, external resistor adjustable from 1 to 100 seconds, UL recognized.

OPERATION

Voltage is continuously applied to the input. An external isolated switch controls the timer. When closed, the load energizes. Opening the switch initiates the delay period. Upon completion of the delay period, the load de-energizes. If the control switch recloses during the delay period, the load remains energized and the timer resets to zero.

WIRING

DIMENSIONS (INCHES)

MODEL NUMBER

Example: TSD-120-ARC-200—Delay on Release, 120 VAC, external resistor adjustable from 2 to 200 seconds, UL recognized.

OFF-Delay Solid-State Output

SPECIFICATIONS

TIMING	Virtually unlimited. RANGES
See page 77 for standard ranges available.	

Single Shot Solid-State Output

SPECIFICATIONS

TIMING RANGES	Virtually unlimited. See page 77 for standard ranges available.
OUTPUT RATING	Solid-state, SPST-N.O. 1 amp resistive; 1 amp 25VA @ 24VAC 1 amp 125VA @ 120VAC . $5 \mathrm{amp} 125 \mathrm{VA} @ 240$ VAC
TIMING	Minimum Setting $+0-20 \%$
TOLERANCES	Maximum Setting $\pm 10 \%$
REPEATABILITY	1\% maximum; no first cycle effect
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
RECYCLE TIME	40 mSEC
SUPPLY VOLTAGE	24, 120, or $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$; $\pm 10 \%$
FALSE TRANSFER	
ENCLOSURE	Surface mounted; totally encapsulated with a high quality epoxy for environmental protection
TEMPERATURE	Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage -49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
TERMINATIONS	1/4" quick disconnect terminals
WEIGHT	NET: 1.28 oz Shipping: 1.6 oz .

OPERATION

Voltage is continuously applied to the input. An external isolated switch controls the timer. When closed (momentary or maintained), the load energizes and the delay period begins. Upon completion of the delay period, the load de-energizes.

WIRING

DIMENSIONS (INCHES)

MODEL NUMBER

Example: TSE-120-AFC-180—Single shot, 120 VAC, fixed delay of 180 seconds, UL recognized.

OPERATION

Application of voltage to the input of the timer initiates the OFF time. Upon completion of the OFF time, the load energizes and the ON time begins. Upon completion of the ON time, the load de-energizes and one cycle is completed. This OFF/ON cycling continues until voltage is removed from the input. The OFF/ON time periods are independently adjustable.

WIRING

DIMENSIONS
(INCHES)

MODEL NUMBER

Example: TSF-24-ARC-300—Repeat cycle, 24 VAC, external resistor adjustable from 3 to 300 seconds, UL Recognized.

Repeat Cycle OFF-Time First Solid-State Output

SPECIFICATIONS

TIMING	Virtually unlimited.
RANGES	See page 77 for standard ranges available.
OUTPUT	Solid-state, SPST-N.O. 1 amp resistive;
RATING	1 amp 25VA @ 24VAC
	1 amp 125 VA @ 120VAC
	. $5 \mathrm{amp} 125 \mathrm{VA} @ 240 \mathrm{VAC}$
TIMING	Minimum Setting $+0-20 \%$
TOLERANCES	Maximum Setting $\pm 10 \%$
REPEATABILITY	1\% maximum; no first cycle effect
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
RECYCLE TIME	40 mSEC
SUPPLY VOLTAGE	24,120 , or $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$; $\pm 10 \%$
FALSE TRANSFER	No
DUTY CYCLE	Continuous
ENCLOSURE	Surface mounted; totally encapsulated with a high quality epoxy for environmental protection
TEMPERATURE	Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage -49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
TERMINATIONS	1/4" quick disconnect terminals
WEIGHT	NET: 1.28 oz Shipping: 1.6 oz .

Repeat Cycle ON-Time First Solid-State Output

SPECIFICATIONS

TIMING	Virtually unlimited.
RANGES	See page 77 for standard ranges available.
OUTPUT	Solid-state, SPST-N.O. 1 amp resistive;
RATING	1 amp 25 VA @ 24VAC
	1 amp 125 VA @ 120VAC
	. 5 amp 125 VA @ 240 VAC
TIMING	Minimum Setting $+0-20 \%$
TOLERANCES	Maximum Setting $\pm 10 \%$
REPEATABILITY	1\% maximum; no first cycle effect
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
RECYCLE TIME	40 mSEC
SUPPLY VOLTAG	4, 120, or $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$; $\pm 10 \%$
FALSE TRANSFER	
DUTY CYCLE	Continuous
ENCLOSURE	Surface mounted; totally encapsulated with a high quality epoxy for environmental protection.
TEMPERATURE	Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage -49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
TERMINATIONS	1/4" quick disconnect terminals
WEIGHT	NET: 1.28 oz Shipping: 1.6 oz .

OPERATION

Application of voltage to the input of the timer energizes the load and initiates the ON time. Upon completion of the ON time, the load deenergizes and the OFF time begins. Upon completion of the OFF time, the load energizes and one cycle is completed. This ON/OFF cycling continues until voltage is removed from the input. The ON/OFF time periods are independently adjustable.

WIRING

DIMENSIONS (INCHES)

MODEL NUMBER

Example: TSG-24-ARC-300—Repeat cycle, 24 VAC, external resistor adjustable from 3 to 300 seconds, UL recognizable.

OPERATION

Application of voltage to the input of the timer initiates the OFF time. Upon completion of the OFF time, the load energizes and the ON time begins. Upon completion of the ON time, the load de-energizes and the cycle is complete. Reset during or after the time periods is accomplished by removal of the input voltage. The OFF/ON time periods are independently adjustable.

WIRING

DIMENSIONS (INCHES)

MODEL NUMBER

Example: TSH-120-AFC-015—Delayed interval, 120 VAC, both delays fixed at 15 seconds, UL recognized.

Delayed Interval Solid-State Output

SPECIFICATIONS

TIMING	Virtually unlimited.
RANGES	See page 77 for standard ranges available.
OUTPUT	Solid-state, SPST-N.O. 1 amp resistive;
RATING	1 amp 25VA @ 24VAC
	1 amp 125VA @ 120VAC
	. $5 \mathrm{amp} 125 \mathrm{VA} @ 240$ VAC
TIMING	Minimum Setting $\quad+0-20 \%$
TOLERANCES	Maximum Setting $\pm 10 \%$
REPEATABILITY	1\% maximum; no first cycle effect
RESET TIMES	Before Time Out 100 mSEC
	After Time Out 50 mSEC
RECYCLE TIME	40 mSEC
SUPPLY VOLTAGE	24,120 , or $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$; $\pm 10 \%$
FALSE TRANSFER	
ENCLOSURE	Surface mounted; totally encapsulated with a high quality epoxy for environmental protection
TEMPERATURE	Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage $\quad-49^{\circ}$ to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
TERMINATIONS	1/4" quick disconnect terminals
WEIGHT	NET: . 96 oz Shipping: 1.28 oz .

Flasher Solid-State Output

OPERATION

When power is applied, the OFF time begins. Upon completion of the OFF time, the load energizes and the ON time begins. Upon completion of the ON time, the load de-energizes and one cycle is complete. This OFF/ON cycling continues until the voltage is removed. THE OFF TIME ALWAYS EQUALS THE ON TIME.

WIRING

SPECIFICATIONS

OUTPUT RATING	Solid-state, SPST-N.O. 1 amp resistive; 1 amp 25VA @ 24VAC 1 amp 125VA @ 120VAC $.5 \mathrm{amp} 125 \mathrm{VA} @ 240$ VAC
DELAY PERIOD	Up to 2 hours fixed or external resistor adjustable; see page 77 for standard ranges.
REPEATABILITY	1\% maximum; no first cycle effect
LOAD TYPE	Resistive, incandescent, or inductive
SUPPLY VOLTAGE 24, 120 or $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} ; \pm 10 \%$	
FALSE TRANSFER No	
DUTY CYCLE	50\%
ENCLOSURE	Surface mounted; totally encapsulated with a high quality epoxy for environmental protection.
TEMPERATURE RATING	Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
	Storage -49° to $185{ }^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
TERMINATIONS	1/4" quick disconnect terminals
WEIGHT	NET: 1.28 oz Shipping: 1.6 oz .

DIMENSIONS (INCHES)

MODEL NUMBER

Example: TSG-24-ARC-300—Repeat cycle, 24 VAC, external resistor adjustable from 3 to 300 seconds, UL recognized.

OPERATION

When power is applied, the OFF time begins. Upon completion of the OFF time, the load energizes and the ON time begins. Upon completion of the ON time, the load de-energizes and one cycle is complete. This OFF/ON cycling continues until the voltage is removed. THE OFF TIME ALWAYS EQUALS THE ON TIME.

WIRING

DIMENSIONS

(INCHES)

MODEL NUMBER

Note: * The flash rate " 100 " option is only available in the " R " type of operation option.

Flasher Solid-State Output

SPECIFICATIONS

OUTPUT Solid SPST N. 1 mp resistive;

RATING	1 amp 25VA @ 24VAC
	1 amp 125VA @ 120VAC
	.5 amp 125 VA @ 240 VAC

SUPPLY VOLTAGE 24 or 120 VAC, $50 / 60 \mathrm{~Hz} ; \pm 10 \%$
FALSE TRANSFER No
LOAD TYPE \quad Resistive or incandescent only
FLASH RATE Factory preset (fixed) or external resistor adjustable from 10 to 100 flashes per minute.

TEMPERATURE	Operate	32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
RATING	Storage	-49° to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

TERMINATIONS $1 / 4$ " quick disconnect terminals
WEIGHT NET: 1.28 oz Shipping: 1.6 oz .

Energy Conservation Timer Solid-State Output

SPECIFICATIONS

TIMING RANGES Virtually unlimited

	See page 77 for standard ranges available.
OUTPUT RATING	Solid-state, SPST-N.O. 1 amp resistive; 1 amp 25VA @ 24VAC 1 amp 125VA @ 120VAC . 5 amp 125VA @ 240 VAC
TIMING TOLERANCES	Minimum Setting $\quad+0-20 \%$ Maximum Setting $\pm 10 \%$.
REPEATABILITY	1% maximum; no first cycle effect
RESET TIMES	Before Time Out 100 mSEC After Time Out 50 mSEC
RECYCLE TIME	40 mSEC
SUPPLY VOLTAGE 24,120 or $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} ; \pm 10 \%$	
FALSE TRANSFER No	
REVERSE POLARITY	Yes
ENCLOSURE	Surface mounted; totally encapsulated with a high quality epoxy for environmental protection
TEMPERATURE RATING	Operate 32° to $131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
	Storage $\quad-49^{\circ}$ to $185^{\circ} \mathrm{F}\left(-45^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
TERMINATIONS	1/4" quick disconnect terminals
WEIGHT	NET: 1.28 oz Shipping: 1.6 oz .

OPERATION

When voltage is applied to the input, the internal relay picks up and the time delay begins regardless of the position of the control switch. With the switch in the open position, when voltage is applied, the timer will complete its time delay period and the internal relay will drop out if the switch is not closed before the completion of the time delay period. With the switch in the closed position, when voltage is applied, the timer will complete its time delay period and the internal relay will drop out if the switch is not opened and reclosed before the completion of the time delay period. After voltage has been applied, closing of the control switch initiates the time delay period. Reset is accomplished by interrupting the supply voltage or re-closing the control switch.

WIRING

DIMENSIONS

(INCHES)

MODEL NUMBER

MODEL NUMBER	TSM		A		C	
SUPPLY VOLTAGE						
24 VAC		24				
120 VAC		120				
240 VAC		240				
TYPE OF OPERATION						
Fixed				F		
External Resistor Adjustable; See page 77 for resistor selection.				R		
DELAY PERIOD See page 77	ges					

Example: TSM-120-ARC-060—Energy conservation timer, 120 VAC, external resistor adjustable from 0.6 to 60 seconds, UL recognized.

A compact version of the versatile 333 Timer, the ATC 353 is its exact functional duplicate. Packaged in a $72 \mathrm{~mm}^{2}$ DIN-Size housing, it occupies 40% less panel space and costs proportionately less. Modern production and assembly techniques have all but eliminated hand wiring, enhancing the reliability and life expectancy of the 353.

CONTROL VERSATILITY: The 353 operates either as a repeat cycle pulse generator or in single-cycle interval or delayed mode. You choose the kind of control action you want by installing jumpers on the terminal block. It also provides a choice of control output. Choose a standard plug-in SPDT relay or optional SPST solid-state switch module plus an independent-24VDC output signal at Terminal 16.
COMPUTER TESTED RELIABILITY: The solid-state 353 is manufactured from a series of computer-tested plug-in circuit boards and assembled virtually without hand wiring. Because it has no moving parts in its logic circuits, its life expectancy is practically unlimited. Even the load relay - the 353 's only significant mechanical component - has a life expectancy of $100,000,000$ operations (no load), while the optional solid-state switch module has virtually unlimited life expectancy. As a result, the 353 achieves an overall reliability that surpasses even the high level achieved by previous Shawnee timers.

SAVE 40\% IN PANEL SPACE AND COST: Packaged in a $72 \mathrm{~mm}^{2}$ DIN-size housing, the 353 occupies 40% less panel space than previous IC timers. Modern production and assembly techniques have substantially reduced manufacturing costs and resulted in a 45% cost saving.
WIDE RANGE: Each Shawnee II 353 timer covers the overall span of 0.01 SEC to 999.9 MIN in four field-convertible ranges.

EASY TO SET: The Shawnee timer is easily and accurately set even with work gloves on. Push any of its four toggle levers in any sequence until the number you want appears above it. You can decrease as well as increase each number by pushing the levers up or down. You can change the setting at any time, even during a cycle.
NOISE IMMUNITY: The 353 does not have to be shielded: its transformer power supply, full-wave bridges, buffered logic and other design characteristics render it immune to the electrical noise that is sometimes encountered in industrial environments thus eliminating false starts and reset due to voltage spikes.
CYCLE PROGRESS INDICATION: The Shawnee 353 indicating timer provides cycle progress indication on a four-digit display located immediately above the digital setting number wheels.
OUTSTANDING REPEAT ACCURACY: Unsurpassed among industrial timers regardless of cost, the Shawnee 353 has a repeat accuracy of ± 10 milliseconds on any setting within its overall range of 999.9 MIN, even in the face of wide swings in temperature or voltage and regardless of the amount of reset time between cycles.

PLUG-IN AND DUST-TIGHT: All 353 timers feature true plug-in design and are dust-tight from the front of panel.

Shawnee II Digital Programmable Timer

MODEL NUMBER

ACCESSORIES:

Surface mounting bracket kit	$353-260-27-00$
Retrofit kit	$305-265-61-70$

The 353C Directly
Replaces 353B \& 353A
Functional Replacement for the 333 Timer

SPECIFICATIONS

RANGES	Four field convertible ranges
	$0.01-99.99$ SEC
	$0.01-99.99$ MIN
	$0.1-999.9$ SEC
	$0.1-999.9$ MIN
TIMING	Single cycle (interval or delayed) and repeat
MODES	cycle pulse generator.

DC POWER	Voltage	$-24 \mathrm{~V} \pm 10 \%$
SUPPLY OUTPUT	Current	40 mA max.
(TERMINAL 7)		

DC OUTPUT	Voltage	ON $-24 \mathrm{~V} \pm 10 \%$
(TERMINAL 16)		OFF --1 V or less
	Current	with relay-5 mA max.
		without relay -40 mA max
	Impedance on -10 ohms max.	
		off -10 K ohms.

PULSE	PULSE ON TIME(with relay): $80 \mathrm{mSEC} \pm 20 \mathrm{mSEC}$
GENERATOR	(may be shortened or lengthened by installing a resistor or capacitor, respectively, across Terminals OPERATION
4 and 11; see Operation Section for details.)	

MINIMUM	99.99 SEC or MIN ranges: 0.01 SEC or MIN, respectively.
SETTING	999.9 SEC or MIN ranges: 0.1 SEC or MIN, respectively.

MOUNTING	Standard	Hardware is provided to mount timer so ACCESSORIES		
	Optional it is dust-tight from front of panel.			Surface mounting without and with front
:---				
facing terminals. (See Accessory section				
of catalog)				

WEIGHT
NET: $1 \mathrm{lb} ., 7 \mathrm{oz}$. Shipping: 2 lbs .

DIMENSIONS
(INCHES)

PANEL CUTOUT
SHOWING DISTANCE BETWEEN ADJACENT CUTOUTS.

TERMINAL WIRING

OPERATION

The Shawnee 353 operates on a digital logic circuit with three main elements: a clock which uses utility line frequency of 50 or 60 Hz as its time base; a read-only-memory (ROM) whose output is set by the timer's digital setting number wheels; and a comparator that continuously examines the outputs of the clock and ROM.

When power is applied (start signal on), the clock begins to count each cycle of the utility line frequency. Translating this count into hundredths of a second, the clock accumulates it and feeds it continuously to the comparator. When clock output exactly equals the output of the ROM, the 353 times out.
At that instant, the clock turns itself off automatically.
At the same instant, the 353 generates one type of control action or another, depending on how it is wired.
When the 353 is wired for interval operation, the timer's output device (either the standard SPDT relay or the optional SPST switch module) is energized from the start to the end of the time cycle; so is the - 24 VDC output at terminal 16.

When the 353 is wired for delayed control, the output device is energized at the end of the cycle and remains on until the timer is reset; so is the - 24 VDC output.

When the 353 is wired as a repeat cycle pulse generator, the output device and the DC signal are both off until the end of the cycle, at which time they are both on for about 80 mSEC . The length of the pulse is included in the time cycle: the cycle runs from the start of one pulse to the start of the next. The 353 automatically starts a new cycle immediately after reset.
The duration of the standard output pulse generated by the 353 is $80 \mathrm{mSEC}(\pm 20 \mathrm{mSEC})$, but it can be easily lengthened or shortened by using a capacitor or resistor across terminals 4 and 11. To shorten the output pulse, the size of the resistor (fixed or variable) is calculated as follows:

$$
\begin{aligned}
& \text { Where: } t=\text { time in milliseconds }(\pm 25 \%) 2.2 \mathrm{t}-2.64 \\
& \mathrm{R}=\text { resistance in megohms } \\
& \text { (must be at least } 0.2 \text { megohm.) } 80-\mathrm{t}
\end{aligned}
$$

To lengthen the output pulse, the size of the capacitor is calculated as follows:

$$
\begin{array}{rlr}
\text { Where: } & \mathrm{T}=\text { time in seconds }(\pm 25 \%) & \mathrm{T}-0.08 \\
\mathrm{C} & =\text { capacitance in microfarads. } & --=--=\mathrm{C}
\end{array}
$$

1.6

NOTE Observe Polarity: (+) Terminal of the capacitor goes to 11, (-) Terminal to 4. To start from AC voltage, jumper terminals $8-9$ and 4-11 and start with AC power at terminals 1 and 2 .

DELAYED MODE -
Sustained* start

INTERVAL MODE -
Sustained* or momentary** start

INTERVAL MODE Sustained* start

REPEAT CYCLE PULSE GENERATOR Uninterrupted start signal

*Start switch must be closed — or DC start signal must be on for entire cycle. Timer resets when start switch opens or DC start signal turns off. To start from DC voltage, apply external ground on 11 and start signal on 9.
**Start switch may be closed — or DC start signal may be on for less that the entire cycle. Timer resets at end of cycle.

Shawnee II Digital Reset Timer

MODEL NUMBER

MODEL NUMBER	355C			30	P		
RANGE							
999.9 SEC		346					
999.9 MIN		347					
99.99 SEC		351					
99.99 MIN		352					
Special		000					
VOLTAGE \& FREQUENCY							
120/60			A				
240/60			B				
120/50			C				
240/50			D				
ARRANGEMENT							
FEATURES							
Basic plug-in unit					P		
Standard unit							X
Special							K

ACCESSORIES:

Surface mounting bracket kit 353-260-27-00
Retrofit kit 305-265-61-70

A compact version of the 335 Timer, the ATC 355 is its exact functional duplicate, packaged in a $72 \mathrm{~mm}^{2}$ DIN-Size housing, it occupies 40% less panel space and costs proportionately less. Modern production and assembly techniques have all but eliminated hand wiring, enhancing the reliability and life expectancy of the 355.

COMPUTER TESTED RELIABILITY: The Solid-State 355 is manufactured from a series of computer-tested plug-in circuit boards and assembled virtually without hand wiring. Because it has no moving parts in its logic circuits, its life expectancy is practically unlimited. Even the load relay - the 355 's only significant mechanical component - has a life expectancy of $100,000,000$ operations (no load). As a result, the 355 achieves an overall reliability that surpasses even the high level achieved by previous Shawnee timers.
CYCLE PROGRESS INDICATION: The Shawnee indicating timer provides cycle progress indication on a four-digit display located immediately above the digital setting number wheels.

PLUG-IN AND DUST-TIGHT: All 355 timers feature true plug-in design and can be replaced in seconds without disturbing the housing or disconnecting the wiring. The dial assembly is gasketed so that the timer body is dust-tight from the front of panel.

WIDE RANGE: Each Shawnee 355 timer covers the overall span of 0.01 SEC to 999.9 MIN in two field-convertible ranges. The 355 indicating timer also offers two additional field-convertible ranges of 0.1-999.9 SEC or MIN

EASY TO SET AT ALL TIMES: The Shawnee timer is easily and accurately set even with work gloves on. Push any of its four toggle levers in any sequence until the number you want appears above it. You can decrease as well as increase each number by pushing the levers up or down. You can change the setting at any time, even during a cycle.
SAVE 40\% IN PANEL SPACE AND COST: Packaged in a $72 \mathrm{~mm}^{2}$ DINsize housing, the 355 occupies 40% less panel space than previous IC timers. Modern production and assembly techniques have substantially reduced manufacturing costs and resulted in a 45% cost saving.
OUTSTANDING REPEAT ACCURACY: Unsurpassed among industrial timers regardless of cost, the Shawnee has a repeat accuracy of ± 10 milliseconds on any setting within its overall range of 999.9 MIN, even in the face of wide swings in temperature or voltage and regardless of the amount of reset time between cycles.
NOISE IMMUNITY: The 355 does not have to be shielded: its transformer power supply, full-wave bridges, buffered logic and other design characteristics render it immune to the electrical noise that is encountered in typical industrial environments

The 355C Directly Replaces 355B \& 355A
Functional Replacement for the 335 Timer

SPECIFICATIONS

OPERATION

The Shawnee 355 operates on a digital logic circuit with three main elements: a clock which uses utility line frequency of 50 or 60 Hz as its time base; a read-only-memory (ROM) whose output is set by the timer's digital setting number wheels; and a comparator that continuously examines the outputs of the clock and ROM.

When power is applied (start signal on), two things happen simultaneously; the instantaneous DPDT relay is energized transferring both sets of contact, and the clock circuit begins to count each cycle of the utility line frequency. Translating this count into hundredths of a second, the clock accumulates it and feeds it continuously to the comparator. When clock output exactly equals the output of the ROM, the comparator causes the 355C to time out.
At this point, (1) the DPDT delay relay is energized, immediately transferring both sets of contacts and (2) the clock turns itself off automatically. Since the clock stops counting even if the start signal remains on, it is not necessary to tie up one of the 355C's delayed contacts to do this job.

To reset the Shawnee 355, power must be removed from terminal 1 (L1) for 75 milliseconds or more. The 355 operates in the On-Delay mode only, always resetting whenever there is a power outage and starting a new cycle when power is restored.
CYCLE PROGRESS INDICATION: When the timer is in the reset condition, the LED display is blank. During the timing cycle, the display counts up from zero, thus always indicating the amount of time that has elapsed since the start of cycle. At time-out, the display shows total elapsed time and exactly equals the numbers on the digital setting wheels.

		Switching Sequence: Assumes a sustained closed start signal (i.e. longer than the setting on the digital display.)		
RELAY	CONTACTS	Before Start	During Timing	End of Cycle
Instantaneous	14-9/6-8			
	14-10/6-7			
Delayed	11-12/4-5			
	11-13/4-3			
BLACK-Circuit Closed			GRAY-Circuit Open	

TYPICAL INSTALLATIONS
All timers shown in "before start" position. Diagrams shown with power off unless otherwise marked. Maximum load current through any load carrying contact is 5 amperes. Pilot lights leads are brought out to terminal block. Pilot light can be wired to show practically any desired function timer energized, cycle running instantaneous or delayed switch closed. etc.

DELAYED CONTACTS
Contacts transfer simultaneously when unit "times out" and all digits are zero.

DIMENSIONS (INCHES)

PANEL CUTOUT SHOWING DISTANCE BETWEEN ADJACENT CUTOUTS.

SUSTAINED START

MOMENTARY START

WIRING

TERMINAL WIRING

The ATC 365 is the latest generation in the popular long-ranger timer series. The microprocessor-based digital timer is equipped with three rotary knobs for setting and adjustment of the Preset. The Preset can be any three-digit value from . 01 SEC to 999 HR. The Decimal and Range are switch selectable. The high-intensity blue vacuum fluorescent display is DIP switch selectable to Timeup or Timedown. Two heavy-duty 7A DPDT relays provide instantaneous, interval or delayed output control. Plug-in panel mounting allows easy replacement without the removal of field wiring.
COMPUTATION: Through its internal microcomputer, the 365 keeps track of the set point throughout the time cycle. Whenever there is a change in set point, even during a cycle, it instantly re-computes the time remaining and accurately determines time-out. This unique capability is especially valuable in the time-down modes as it allows you to shorten a cycle without loss of accuracy.
POSITIVE RESET TIME AND PULSE LENGTH: Digitally clocked by the microcomputer, the 365 's reset time is consistently of the same duration, regardless of variations in line voltage, power supply, or time cycle. As a result, the 365 is not subject to false reset from momentary power interruptions (less than 30 mSEC). When the 365 operates in repeat-cycle mode, the output pulse is also digitally clocked so that both its occurrence and duration are consistent.

WIDE RANGE: Each 365 Long-Ranger covers the overall span of 0.01 SEC to 999 HR , in nine switch-selected ranges of 0 to 9.99 , 99.9 or 999 SEC, MIN or HR. The timer can be optimized within any selected range simply by removing appropriate selector knobs (e.g. with the timer in the 9.99 SEC range, you can obtain a tamper-proof span of 0.99 by setting the left selector at 0 and removing the knob).
PROGRAMMABLE DISPLAY: Depending on the position of an internal jumper, the 365 's three-digit cycle progress display will time UP to or DOWN from the set point; after time-out, it will either STOP or GO (i.e. display the time elapsed after time-out). To the right of the three-digit display, a timing bar " $=$ " blinks once per second during the timing cycle and rapidly after timeout. At left, a marker " ∇ " turns on when the delayed relay is energized.
NOISE IMMUNITY: The 365 has formidable defenses against noise: transformer power supply, full-wave bridges, buffered logic. Furthermore its microcomputer detects; and rejects; noise pulses that manage to penetrate its defenses. No industrial timer has ever offered greater noise immunity.
RELIABILITY AND RUGGEDNESS: ATC firmly believes that no industrial timer has ever achieved a higher level of reliability and ruggedness. The 365's electronic components have no moving parts and are assembled, virtually without hand wiring, from computer-tested circuit boards. Its few mechanical components have been selected for reliable service; the two load relays have a life expectancy of $100,000,000$ operations and heavy-duty contacts rated at 7 amps ; and the three rotary set point selector switches exhibit extremely low wear.

COMPACT, PLUG-IN AND DUST-TIGHT: Packaged in a $72 \mathrm{~mm}^{2}$ DIN housing, the 365 occupies 40% less panel space than conventional timers. It is a true plugin timer that can be replaced in seconds without disturbing housing or wiring. The 365 is also fully gasketed and 0 -ring sealed to be dust tight.
SELF DIAGNOSTICS: The time will display "FAIL" anytime there is a problem or the knobs are in between digits.

LONG-RANGER Timer

DIMENSIONS (INCHES/MILLIMETERS)

PANEL CUTOUT SHOWING DISTANCE BETWEEN ADJACENT CUTOUTS.

The 365 C Directly
Replaces 365A \& 365B

SPECIFICATIONS

MODELS	Arrangement " 30 ," with digital display available for On-Delay operation at 120, 240 or 24 VAC; and 24 VDC
RANGES	Switch-selectable ranges of 0-9.99, 0-99.9 and 0-999 SEC, MIN or HR
TIMING	Single Cycle interval or delayed
MODES	Repeat Cycle pulse-clocked at 50 to 80 mSEC (will be constant for a given unit)
RESET TIME	Clocked at 60 mSEC
DISPLAY CYCLE PROGRESS	3 digit display, 0.3 inch, high-intensity, blue programmable: DOWN and STOP, DOWN and GO, UP and STOP or UP and GO
	TIME-OUT ∇ display (left); energized at time-out.
TIMING BAR	display (right); blinks once per second during cycle, rapidly after time-out.
CLOCK INPUT (terminal 15)	120VAC $95-132 \mathrm{VAC}, 10 \mathrm{~mA}$ max. current at Model 120V
voltage MODEL	240VAC 190-264VAC, 10 mA max. current at Model 240 V
	24VAC 19.2-26.4VAC, 20 mA max. current Model 24 V at
	$\begin{array}{ll} \hline \text { 24VDC } & \text { 19.2-26.4VDC (5\% ripple), } 5 \mathrm{~mA} \\ \text { Model } & \text { max. current at } 24 \mathrm{~V} \end{array}$
TEMPERATURE RATING	32 to $122^{\circ} \mathrm{F}\left(0\right.$ to $\left.50^{\circ} \mathrm{C}\right)$

POWER REQUIREMENTS	120 VAC	95-132 VAC, 50 or 60 Hz . Inrush - . 3A. Running 0.06A at 120 VAC
	240 VAC	$\begin{aligned} & 216-264 \mathrm{VAC}, 50 \text { or } 60 \mathrm{~Hz} . \\ & \text { Inrush - } .15 \mathrm{~A} . \\ & \text { Running - } 0.03 \mathrm{~A} \text { at } 240 \mathrm{VAC} \end{aligned}$
	24 VAC	19.2-26.4 VAC, 50 or 60 Hz Inrush - 1A. Running -0.25 A at 24 VAC
	24 VDC	19.2-26.4 VDC, 5% ripple Running - . 120A AT 24 VDC
LOAD RELAY	Number	one instantaneous and one delayed
	Type	DPDT, Form C.
	Operate T	ime P $13 \mathrm{mSEC}, \mathrm{max}$.
	Release T	Tme 10 mSEC , max.
	Contact R	atings 7A at 120,240 or 24 VAC $1 / 6 \mathrm{HP}$
	Life	100 million operations (no load)
REPEAT ACCURACY	$\pm .001 \% \pm .010$ SEC of setting	
SETTING aCCURACY	$\pm .01 \%+.030$ SEC of setting	
TERMINALS	16 screw terminals accessible at rear	
HOUSING	$72 \mathrm{~mm}^{2}$ DIN size; plug-in design; fully gasketed, dust and water-tight in panel mounted installations	
	Standard	hardware is provided for front-of-panel mounting.
	Optional	Surface-mounting brackets with front-facing terminals.
WEIGHT	NET: AC 1 DC 14 oz.	lb., 6 oz. Shipping: AC 2 lbs. DC 1 lb ., 8 oz.

WIRING

TERMINAL WIRING

As soon as power is applied to terminals $1 \& 2$ of the timer, the instantaneous relay is energized and changes the states of its associated contacts (8-6-7 \& 9-14-10). The timer then looks for terminal 15 (the clock terminal) to receive power. When terminal 15 is powered, the internal clock circuit is enabled and the timer starts to time. When the internal clock time equals the time set on the front face, the delayed relay energizes and changes the states of its associated contacts (3-4-5 \& 13-11-12). The timer is reset by removing power from terminal 1 for at least 60 msec . At reset, both relays revert back to their shelf (without power) state.
SPECIAL NOTE FOR UNITS WITHOUT DISPLAYS: On nondisplay units, terminals $1 \& 15$ are jumpered together internally. As soon as power is applied, the instantaneous relay energizes and the timer starts to time immediately.
DISPLAY INFORMATION: The digital display can be set to time up or down by simply moving a DIP switch on the circuit board.

MODE:

- 30PX STOP (Time up/down to time set, transfer delayed relay, and stop timing).
- 50PX G0 (Time up/down to time set, transfer delayed relay, and continue timing until unit is reset).

KEY SYMBOLS

POWER SUPPLY
CLOCK
INDEPENDENT LOADS
DEPENDENT LOADS
MOMENTARY STARTING CONTACT SUSTAINED STARTING
CONTACT

- LOAD ENERGIZED LOAD DE-ENERGIZED

DELAYED CONTACTS

Contacts transfer simultaneously when unit "times out" and all digits are zero.

All timers shown in "before start" position. Diagrams shown with power off unless otherwise marked. Maximum load current through any load carrying contact is 5 amperes. Pilot lights leads are brought out to terminal block. Pilot light can be wired to show practically any desired function timer energized, cycle running instantaneous or delayed switch closed. etc.

INSTANTANEOUS CONTACTS

Contacts are transferred when power supply is energized, transferred back as shown when de-energized.

SUSTAINED START

MOMENTARY START

REPEAT CYCLE PULSE

Long-Ranger Computing Timer with Memory

- EEPROM Memory
- Magnetic Latching Relay
- Delayed \& Instantaneous DPDT Contacts
- Switch Selectable SEC, MIN or HR Ranges
- Nine Ranges 0 to 9.99, 99.9 or 999
- High Accuracy \& Noise Immunity
- Easy Plug-In Housing
- High Intensity Blue Fluorescent Display
- Fully Gasketed and 0-ring sealed to be dust tight
- Timeup or Timedown Display Operation
- 50 or 60 Hz Operation Self-Adjusting

OPERATION

Arrangement 30 \& 50 Models
When power is applied to terminals $1 \& 2$ and 15 of the timer, the instantaneous relay is energized and its contacts change state. The timer starts timing, indicated by the display. The timing bar " \quad " blinks slowly and the digital display indicates elapse time (Timeup \& Stop) or time remaining (Timedown \& Stop).
When the preset value is reached, the display stops, the timing bar blinks rapidly, the triangular timed-out symbol " ∇ " blinks, and the delayed relay latches and its contacts change state. The timer remains in this timed-out condition until reset by applying power to the Reset terminal 16 for at least 60 msec . At reset, both relays revert back to their shelf state (without power).
Note 1: The delayed relay is a magnetic latch relay and once latched it will not unlatch even if power is removed or the unit is unplugged from the housing. It will only unlatch when power is momentarily applied to the Reset terminal 16.

Packaged in a $72 \mathrm{~mm}^{2}$ DIN housing, the ATC 365 is a true plug-in timer that can be replaced in seconds without disturbing the mounting housing or field wiring. Machine and process downtime is kept to a minimum. The 365 M is also fully gasketed and 0 -ring sealed to be dust tight.
WIDE RANGE: Each 365 timer covers the overall span of 0.01 SEC to 999 HR, in nine switch-selectable ranges of 9.99, 99.9, or 999 SEC, Min, or HR.
EASY-TO-ADJUST PRESET: ATC's unique three rotary switches for easy setting and adjustment of the preset time is an industry standard. The switches can be adjusted anytime, even during a timing cycle. The timer is constantly scanning the preset setting and instantly re-computes the time cycle if a preset change is detected. This is especially valuable in the Timedown mode allowing you to shorten or abort the current time cycle without the removal of power.
SELF-CALIBRATING: The microprocessor automatically calibrates the timer for 50 or 60 Hz power operation, there are no switches or jumpers to set.
PROGRAMMABLE DISPLAY: An internal DIP switch can be set for Timeup or Timedown and Stop display operation on the Arrangement 30 model. The Arrangement 50 model can be set for Timeup or Timedown and go. There is a horizontal timing bar " " which appears to the right of the display and blinks once per second during timing and rapidly at timeout. At left, a timed out symbol " " blinks after time-out indicating when the magnetic delayed relay is latched.
MAGNETIC LATCH RELAY: The 365 utilizes a unique magnetic latch delayed relay which energizes, latches, at time-out. Once latched it will not unlatch even with power removed or the unit is unplugged from the housing. It will only unlatch when power is momentarily applied to the Reset, terminal 16.
NON-VOLATILE MEMORY: An EEPROM memory chip to retain the time value during a loss of power and continues timing when power is restored. No battery is required.

DIMENSIONS (INCHES/MLLLIMETERS)

SPECIFICATIONS

WIRING

MODELS	Choice of two standard 120 VAC models Each model available in 240 VAC or 24 VAC
365M300Q30PX	Timeup \& Stop or Timedown \& Stop, with display.
365M300Q50PX	 Go, with display.

RANGES	Nine (9) Switch-Selectable ranges 0-9.99, 0-99.9, and 0-999 SEC, MIN, or HR
MEMORY RETENTION	100,000 read/write cycles
RESET TIME	Guaranteed not to reset <20 mSEC Typical reset $=40 \mathrm{mSEC}$ Guaranteed to always reset $>60 \mathrm{mSEC}$
DISPLAY	Cycle Progress 3-digit high-intensity blue VF display, 0.3 inch Timing Bar: " \square " display; blinks once per second during timing, rapidly after time-out. Timed-Out Symbol: " ∇ ", blinks after time-out, blinks when latch relay is latched
LOAD RELAYS	Type DPDT, Form C Contact Rating 7 Amps @ 120 VAC, or $1 / 6 \mathrm{HP}$ @ 240 VAC
	Operate Release 10 mSEC max. Time
	Life 10 million operations (no load)

TEMPERATURE 32 to $122^{\circ} \mathrm{F}\left(0\right.$ to $50^{\circ} \mathrm{C}$)
RATING

POWER REQUIREMENTS	120 VAC	50 or 60 Hz (10%, -20\%)
		Running <100mA @120VAC
	240 VAC	50 or $60 \mathrm{~Hz}(10 \%,-20 \%)$
		Running < 50mA @ 240 VAC
	24 VAC	50 or 60 Hz (10\%, -20\%)
		Running < 300mA @ 24 VAC
CLOCK INPUT (Terminal 15)	120 VAC	95-132 VAC,
		10 mA max. current @ 120V
	240 VAC	90-264 VAC,
		10 mA max. current @ 240V
	24 VAC	19.2-26.4 VAC,
		20 mA max. current @ 24V

TERMINALS	16 Screw (6-32) terminals with saddle clamps accessible at rear
HOUSING	$72 \mathrm{~mm}^{2}$ DIN size, Plug-in design, fully gasketed dust tight when panel mounted. Panel mounting bracket included.
WEIGHT	Net: 1 lb .6 oz Shipping: 2 lbs.

MODEL NUMBER

MODEL NUMBER	365M					P

Accessories:

Surface Mounting Bracket Kit
353-260-37-00
Retrofit Kit
305-265-61-70

Timer/Counter with Memory

- EEPROM Memory
- Easy DIP Switch Setup
- Three Adjustable Presets with Internal Cycle Totalizer
- Dual LED Display with Cycle Progress
- Selectable SEC, MIN, or HRS Ranges
- Nine Timing Ranges 0 to 9.99, 99.9, 999, or HR:MIN, MIN:SEC to 99:59
- Two Counting Ranges 0 to 9999 or 10 to 99990
- Multiple Starting Options
- Dual DPDT Relays Rated at 7A @ 120 or 240 VAC
- $50-60 \mathrm{~Hz}$

In the timer mode, the 385 can be programmed to cover the overall span of 0.01 SEC to 999 HR in nine ranges, and can be programmed to time in Hours:Minutes and Minutes:Seconds. In the counter mode, it can cover the overall span of 1 to 99,900 counts in two ranges.
MULTIPLE RELAY ACTIONS: The relationship between the 385's two DPDT relays, Relay 1 and Relay 2 can be programmed for any of the four modes of operation to satisfy virtually any control scheme.
MULTIPLE STARTING OPTIONS: The 385 can be easily programmed to start with a momentary or sustained start signal. The start signal can also be set for a voltage or no voltage starting condition.

NEW TIMING AND COUNTING MODES: The 385 has two new modes of operation. The flip-flop timer/counter with batch, which can be programmed to function as a flip-flop that will stop after a certain number of cycles or a time span. The other new flip-flop function is a standard flip-flop with a programmable dwell between the relays.

DISPLAY: The display is an LED dual display which can be programmed to run UP to or DOWN from the set point. The lower display shows the preset selected to view and the upper display shows the cycle progress.

NON-VOLATILE MEMORY: The 385 retains its entire program and preset time/count periods even when there is a loss of power. No batteries are required.
REAL-TIME COMPUTATIONS: The 385's microcomputer instantly recomputes time/count-out when there is a change in the set point during a cycle. This allows you to shorten a cycle without loss of accuracy.
COMPACT, PLUG-IN AND DUST-TIGHT: Packaged in a $72 \mathrm{~mm}^{2}$ DIN housing, the 385 takes 40% less panel space than conventional timers. A true plug-in design, it can be replaced in seconds without disturbing housing or wiring. Fully gasketed and sealed, it is dust tight in panel mounted installations. SETUP: Setup of the 385 is accomplished using 16 DIP switches which are located inside the unit. These DIP switches give a visual indication of how the Controller is setup, and eliminates the use of complex programming codes.

DIMENSIONS (INCHES/MLLLIMETERS)

PANEL THICKNESS 1/16" TO 3/16"

Panel Cutout Dimensions

MODEL NUMBER

MODEL NUMBER	385A	500	Q	50	P	
RANGE		500				
VOLTAGE \& FREQUENCY 120 VAC $50-60 \mathrm{~Hz}$			Q			
FUNCTION Programmable				50		
FEATURES Basic plug-in unit					P	
Standard unit						X
Special						K

ACCESSORIES:

Surface mounting bracket kit
353-260-27-00

PRESET SETUP

After you have setup the Controller by programming the DIP switches you must first set DIP switch (8) on the right bank to program mode, this allows you to set the presets 1,2 and 3 , in seconds, minutes, or hours. You must press the "select" button to choose the preset to select. To choose the time range you must select the timing bar "_" and

LEFT SWITCH

RIGHT SWITCH

$A=$ Preset $2-\operatorname{Preset} 1$
FLIP FLOP TIMER OR COUNTER WITH DWELL SIMILAR TO ATC (306) ACTION
Relay 1 energizes at start then has a dwell (Preset 3) Relay 2 then energizes and drops out. Cycle can repeat or cycle once.

For a standard Flip-Flop timer / counter set Preset 3 to " 0 ".
*Note: Relay arrangement 1 and 2 are shown in single cycle only, when used in repeat cycle the relationship between the relays changes, the process restarts after preset 2. The microprocessor automatically calibrates the timer for 50 or 60 Hz power operation, there are no switches or jumpers to set.

OPERATION

THE DISPLAY: A highly visible dual display consists of three digits with a movable decimal point or four digits for counting. There is a horizontal timing bar " \quad " which appears to the right of the upper display and blinks once per second during timing. This is very useful in showing that the timer is timing especially when the digits do not change rapidly as in the hours ranges. The timing bar blinks rapidly at time-out as well. The lower display is DIP switch selectable to display the preset time or counts for any one of the four presets, and the upper display will show that presets cycle progress.
UNDERSTANDING THE PRESETS: There are three programmable presets, Preset 1, Preset 2, and Preset 3. There is a totalizer for each mode of operation, this preset is designated Preset 4. This preset is for display only and increments a count at the end of each cycle, to reset the totalizer to zero you must go into programming mode (see DIP SWITCH SETUP) and set all four digits to zero. Once the totalizer reaches 9999 it will go to E000, the maximum count is E999 which actually has a count value of 10999. When changing or setting a preset in run mode, the display will revert back to the running time after a button has not been used for 10 seconds.

FUNCTIONS: To use the 385 you must apply power to terminals 16 and 2 , terminal 1 is the start/reset or momentary start input terminal. You must also apply voltage to terminal 15 (clock/count input) to start timing or place a count, if power is removed from terminal 15 when you are timing the 385 will stop where it is and continue when power is reapplied to terminal 15. The 385 was designed to replace most of the functions of the ATC model 375. Most of these functions can be done with the relay arrangement 1 and 2 modes of operation. The arrangement 3 mode was not implemented, and most arrangement 3 applications can be done with the flip-flop mode of operation. The 385 can function as a ON-Delay or OFF-Delay timer or counter in arrangement 1 , (ATC model 365,366) to allow this, preset 1 and preset 3 must be set to 999 hours, the 385 will interpret this as infinite time and display as "INF". Preset 2 will be the set time and allow a setting of 999 hours. Relay 1 will act as an instantaneous relay, and Relay 2 as a delayed relay. The 385 when set as a standard timer operates in hours, minutes, and seconds with a movable decimal point, also the 385 can operate in hours:minutes and minutes:seconds with a maximum setting of 99:59 (see DIP SWITCH SETUP).
NEW MODES OF OPERATION: The 385 can perform as a Flip-Flop timer or counter with batch. Preset 1 is the first set time and Preset 2 is the second set time. Preset 3 is the batch, which it stops at after a certain number of flip-flop cycles up to 999, or stops at any desired time. In this mode you cannot use the hours:minutes and minutes:seconds operation. The other new mode of operation is the Flip-Flop timer or counter with dwell. This is the mode to be used when a standard Flip-Flop is needed. This new mode is designed to have a first set time (Preset 1) then a dwell time (Preset 3) followed by the second set time (Preset 2), when used in repeat cycle there is a dwell after Preset 2 also. To use as a standard Flip-Flop set the dwell time to " 0 ". All of the modes can be set for a voltage or no voltage start, momentary or sustained start, and repeat or single cycles.

TERMINAL WIRING

Multifunction, Multi Range

 Timer Counter- Dual Display, 4 digit, 7 segment LED
- LED Status Indicator: Relay 1, Relay 2, Seconds, Minutes, Hours
- 2 Setpoints
- Programmable Input Scaling
- Down Counting for Timer, Up/Down Counting for Counter
- Batch Counting

DIMENSIONS (MILLIMETERS)

TERMINAL CONNECTIONS

© ${ }^{\circ}$ Us Cable Size (AWG): 13; Stud Hole for Lug (inch): 0.137 ; Tightening Torque (Lb-inch): 7

SENSOR TYPE	NPN / PNP
INPUT TYPE	Voltage pulse (3 to 30 V DC) from Proximity switches, Solid state devices, Potential free contact encoder
INPUT SPEED	a) 3Hz, b) 30Hz, c) 5kHz
ACCURACY	Timer: $\pm 0.05 \%$ of setting
Counter: ± 0 counts	
SCALE FACTOR	0.001 to $9.999 \times 10 "$ $n=-3,-2,-1,0,1,2$
RESET	Front, Remote, Power Interruption
SENSOR SUPPLY	Built-in, 12V DC, 30mA (short circuit protected)
OUTPUT	2 SPST (2 NO)
RELAY RATING	5 A @ 230 V AC
OPERATING	Timer: ON delay, Inteval, Cyclic ON first,
MODES	Cylic 0FF first, Batch
	Counter: ON delay, Interval, Auto reset,
RANGE	Time pulse Repeat, Batch

ORDERING INFORMATION

PART NO.

385AR-100-T5X

SUPPLY VOLTAGE
85 to 270 V AC/DC 24V AC/DC Model Available: Please Consult Factory

DESCRIPTION

Model 425AR digital timer is a multi-function, multi range series. It comes standard with a 4-digit, 7-segment dual LED display. S The unit can be set for up/down counting direction and modes of operation include on-delay, interval, cyclic, forward-pause-reverse, instantaneous contact and delayed batch. The Model 425AR series is available in a $1 / 16$ DIN ($48 \times 48 \mathrm{~mm}$) housing with 2 SPST (NO) $5 \mathrm{a} @ 230$ vac contacts and a supply operating voltage range of 90 to $270 \mathrm{vac} / \mathrm{dc}(50 / 60 \mathrm{~Hz})$. The 425AR series is UL approved and CE certified.

SPECIFICATIONS

START INPUT	Gate/Pulse start (programmable)
ACCURACY RESET	$\pm 0.05 \%$ of $\mathrm{F} . \mathrm{S}$ or 50 msec (F.S. $=$ Full Scale) Front, Remote, Power interruption (programmable)
OUTPUT CONTACT	2 SPST (2 NO)
RELAY RATING	5A @ 230V AC
MODES	ON delay / Interval delay Cyclic ON first / Cyclic OFF first Forward-pause-reverse Instantaneous + delayed Batch
TIME RANGES	0-99.99 sec
	$0-999.9 \mathrm{sec}$
	0-9999 sec
	0-99:59 min:sec,
	0-999.9 min
	0-9999 min
	0-99:59 hr:min,
	$0-999.9 \mathrm{hr}$
	$0-9999 \mathrm{hr}$
COUNTING DIRECTION	Up/Down
MEMORY	10 years

CONFIGURATION Password protected LOCK
SUPPLY VOLTAGE 90 to 270 V AC/DC $(50 / 60 \mathrm{~Hz})$
-15% to 10% tolerance
POWER 5VA max.

CONSUMPTION

TEMPERATURE	Operating: $0-50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Storage: -20 to $75^{\circ} \mathrm{C}\left(-4\right.$ to $\left.167^{\circ} \mathrm{F}\right)$	
HUMIDITY (non-condensing)	

WEIGHT	6.2 oz.
PROTECTION	IP65 for faceplate
LEVEL	

24V AC/DC MODEL AVAILABLE
Please consult factory

TIMING DIAGRAMS

The ATC 652 is a micro-processor-based timer with a 4-1/2 digit LCD display that can provide an indication of either preset time remaining or elapsed. There are five timing ranges covering time values from one millisecond to 199 hours 59 minutes. The unit has both an instantaneous relay output and a programmable relay output which can be programmed for any one of 14 different timing modes.

The timing range and mode are selected with an internal DIP switch. The time value is entered using the keypad on the front face. The programmed values are retained in memory and are secured in memory by a keypad lockout command. The keypad can also be used to perform secondary functions such as reset, immediate time out, time inhibit, changing the direction of the display, displaying the number of cycles run, and clearing the cycle counter.

The Model 652 is housed in a standard 15 -terminal, plug-in, round case. Models are available for operation on either 120 VAC or 240 VAC.

Multi-Function Multi-Range Timer

DIMENSIONS (INCHES/MILLIMETERS)

- Five Time Ranges From 0.001 SEC
- Replaces Most Electro-Mechanical Timers
- Six Single-Cycle and Eight Repeat-Cycle Timing Modes
- Easy Programming 7/16" High LCD Display
- Sealed Faceplate
- Keypad Lockout of Time Setting
- Internal Cycle Counter
- Data Retention Memory with EEPROM Circuitry (652-8-4000, 652-8-4001 Models)
- Data Retention Memory with Lithium Battery (included with timer) (652-8-5000, 652-8-5001 Models)

WIRING

model 600-3-3950 surface mounting bracket

SPECIFICATIONS (ALL MODELS)

TIMING	0.001 SEC to 19.999 SEC
RANGES	0.01 SEC to 199.99 SEC
	0.1 SEC to 1999.9 SEC
	1 SEC to 199 MIN 59 SEC
	1 MIN to 199 Hr .59 MIN
MODE OF OPERATION	ON-Delay, Interval, Reverse Start Delay
	Reverse Start Interval, Momentary Start
	Accumulator, Repeat Cycle-OFF First
	Repeat Cycle-ON First, Repeat Cycle
	Reverse Start-OFF First, Repeat Cycle
	Reverse Start-ON First, Repeat Pulse
	Repeat Pulse, First Pulse Immediate
	Repeat Pulse-Reverse Start, Repeat Pulse,
	First Pulse Immediate Reverse Start
TIME SETTING	Front Panel Keypad
TIME REPEAT ACCURACY	± 0.005 SEC
DISPLAY	LCD - 4 1/2 Digit, 7/16" High
RELAYMECHANICALLIFE	
INSTANTANEOUS RELAY OUTPUT	7 Amps Resistive, 240 VAC, 2 N.O.
	2 N.C. Contacts
TIMED RELAY OUTPUT	7 Amps Resistive, 240 VAC, 2 N.O.
	2 N.C. Contacts
TEMPERATURE RATING	$32^{\circ}-140^{\circ} \mathrm{F}\left(0^{\circ}-60^{\circ} \mathrm{C}\right)$
OPERATING POWER	120 or $240 \mathrm{VAC},+10 \%,-20 \%, 50 / 60 \mathrm{~Hz}$
TRANSIENT VOLTAGE PROTECTION	Metal Oxide Varistor
NEMA RATING	NEMA 12
TERMINALS	Screw Terminals
MOUNTING	Plug In Case
WEIGHT	Net: 25 oz. Shipping: 30 oz.

SPECIFICATIONS
(652-8-4000 \& 652-8-4001)

RESET TIME	25 mSEC
CONTROL	25 mSEC
VOLTAGE	
INITIATE TIME	

MEMORY	EEPROM Circuitry
POWER	5.2 VA
CONSUMPTION	

SPECIFICATIONS (652-8-5000 \& 652-8-5001)

RESET TIME	8 mSEC
CONTROL	8 mSEC
VOLTAGE	
INITIATE TIME	

MEMORY	Lithium Battery (Included with unit)
POWER	3.7 VA
CONSUMPTION	

ORDERING INFORMATION

MODEL NUMBER	DESCRIPTION
652-8-4000	Plug-in, Round Case Timer 120 VAC W/EEPROM Memory
652-8-4001	Plug-in, Round Case Timer 240 VAC W/EEPROM Memory
652-8-5000	Plug-in, Round Case Timer 120 VAC W/Battery Memory
652-8-5001	Plug-in, Round Case Timer 240 VAC W/Battery Memory
651-3-0128	Mounting Gasket, 1/8" Thick (Included With Timer)
651-3-0129	Mounting Gasket, 1/4" Thick (Included With Timer)
600-3-3950	Base Mounting Bracket

Replacement lithium batteries - Old ATC Part \#652-3-0130 is not available. Use TADIRAN\#TL-5902/S SAFT, \#LS14250 or EAGLE-PICHER \#PT-2150 from most electrical distributers.

The ATC 653 is a micro-processor-based control that can function as either a timer or a counter. It has a $4-1 / 2$ digit LCD that can provide an indication of either the time or count value remaining or elapsed. There are five timing ranges covering time values from one millisecond to 199 hours 59 minutes. There are also three count speeds to a maximum of 7500 counts per second. The unit has an instantaneous relay output and a programmable relay output which can be programmed for any one of 14 different timing modes.

The timing range, count speed and timing mode are programmed with an internal DIP switch assembly. An external switch determines whether the time inhibit or count input takes place with application or removal of voltage. The time or count value is preset by the operator using the keypad on the front face.
These programmed values are retained in memory and are secured in memory by a keypad lockout command. The keypad can also be used to perform secondary functions such as reset, immediate time/count out, time/count inhibit, changing the direction of the display, displaying the number of cycles run, and clearing the cycle counter.

The Model 653 is housed in a standard 15-terminal plug-in round case. Models are available for operation on either 120 VAC or 240 VAC. Counting can be done at either line voltage or at 12-48 VDC/24 VAC jumper selected.

DIMENSIONS (INCHES/MILLIMETERS)

model 600-3-3950 surface mounting bracket

- Functions As Timer or Counter
- Five Time Ranges
- Six Single-Cycle and Eight Repeat-Cycle Timing Modes
- Sealed Faceplate
- Cycle Counter
- Count Input Scaling
- Data Retention Memory with EEPROM Circuitry. (653-8-4000, 653-8-4001 Models)
- Data Retention Memory with Lithium Battery (included with timer) (653-8-5000, 653-8-5001 Models)

WIRING

TIMING	0.001 SEC to 19.999 SEC
RANGES	0.01 SEC to 199.99 SEC
	0.1 SEC to 1999.9 SEC
	1 SEC to 199 MIN 59 SEC
	1 MIN to 199 Hr .59 MIN
COUNT MODES	500 CPM, AC/DC
	5000 CPM, AC/DC
	7500 CPS, DC Only
MODE OF OPERATION	ON-Delay, Interval, Reverse Start Delay
	Reverse Start Interval, Momentary Start
	Accumulator, Repeat Cycle-OFF First
	Repeat Cycle-ON First, Repeat Cycle
	Reverse Start-OFF First, Repeat Cycle
	Reverse Start-ON First, Repeat Pulse
	Repeat Pulse, First Pulse Immediate
	Repeat Pulse-Reverse Start, Repeat Pulse
	First Pulse Immediate Reverse Start
TIME SETTING	Front Panel Keypad
TIME REPEAT ACCURACY	Count: 100% Time: ± 0.005 SEC
DISPLAY	LCD - 4 1/2 Digit, 7/16" High
RELAY MECHANICAL LIFE	50,000,000 Operations
INSTANTANEOUS RELAY OUTPUT	7 Amps Resistive, 240 VAC, 2 N.O.
	1 N.C. Contact
TIMED RELAY OUTPUT	7 Amps Resistive, 240 VAC, 2 N.O.
	2 N.C. Contacts
TEMPERATURE RATING	$32^{\circ}-140^{\circ} \mathrm{F}\left(0^{\circ}-60^{\circ} \mathrm{C}\right)$
OPERATING POWER	120 or $240 \mathrm{VAC},+10 \%,-20 \%, 50 / 60 \mathrm{~Hz}$
TRANSIENT VOLTAGE PROTECTION	Metal Oxide Varistor
NEMA RATING	NEMA 12
TERMINALS	Screw Terminals
MOUNTING	Plug In Case
WEIGHT	Net: 25 oz. Shipping: 30 oz .

RESET TIME	25 mSEC
CONTROL	25 mSEC
VOLTAGE	
INITIATE TIME	
MEMORY	EEPROM Circuitry
POWER	5.2 VA
CONSUMPTION	

SPECIFICATIONS
 (652-8-5000 \& 652-8-5001)

RESET TIME 8 mSEC

CONTROL 8 mSEC
VOLTAGE INITIATE TIME

MEMORY	Lithium Battery (Included with unit)
POWER	3.7 VA
CONSUMPTION	

ORDERING INFORMATION

MODEL NUMBER	DESCRIPTION
653-8-4000	Plug-in, Round Case Timer 120 VAC W/EEPROM Memory
653-8-4001	Plug-in, Round Case Timer 240 VAC W/EEPROM Memory
653-8-5000	Plug-in, Round Case Timer 120 VAC W/Battery Memory
653-8-5001	Plug-in, Round Case Timer 240 VAC W/Battery Memory
651-3-0128	Mounting Gasket, 1/8" Thick (Included With Timer)
651-3-0129	Mounting Gasket, 1/4" Thick (Included With Timer)
600-3-3950	Base Mounting Bracket

Replacement lithium batteries - Old ATC Part \#652-3-0130 is not available. Use TADIRAN\#TL-5902/S SAFT, \#LS14250 or EAGLE-PICHER \#PT-2150 from most electrical distributers.

The ATC Model 655 timer is an electronic control that will retrofit most round case electromechanical timers. the control performs the same timing modes (ON-Delay or Reverse Start Delay) as electromechanical units, and it is capable of timing ranges from 1 millisecond to 199 hours, 59 minutes. On the bottom inside of the control are DIP switches which can be set, in seconds, to establish the timing mode and time range. Our unit will plug into competitive mounted cases without wiring changes in most instances. Remove the electromechanical timer, set ours, plug it into the electromechanical timer case and you're ready to run. DIP switch setting instructions for electromechanical timers are supplied with 655 installation instructions.

Panel Mounted Digital Timer

- Direct Replacement For Electromechanical Timers
- Two Timing Modes
- Data Retention with EEPROM Memory or Battery (included with timer).
- Five Time Ranges
- Simple Keypad Time Setting
- Sealed Faceplate
- Keypad Lockout of Time Setting
- Easy Programming
- Instantaneous Contacts Directly Track the Control Input

ORDERING INFORMATION

MODEL NUMBER	DESCRIPTION
$655-8-4000$	Timer 120VAC W/EEPROM Memory
$655-8-4001$	Timer 240VAC W/EEPROM Memory
$655-8-5000$	Timer 120 VAC W/Battery Memory
$655-8-5001$	Timer 240 VAC W/Battery Memory
$600-3-3950$	Base Mounting Bracket
$651-3-0128$	Mounting Gasket, 1/8" Thick (Included with Timer)
$651-3-0129$	Mounting Gasket, 1/4" Thick (Included with Timer)

Replacement lithium batteries - Old ATC Part \#652-3-0130 is not available. Use TADIRAN\#TL-5902/S SAFT, \#LS14250 or EAGLE-PICHER \#PT-2150 from most electrical distributers.
${ }_{c} \mathrm{ND}_{\text {us }}^{\circ}$
E205980

Eagle Part Number	655	Switch Settings					
	1	2	3	4	5	6	7
HP50A6	0	0	X	0	0	0	0
HP50A601	0	0	X	0	0	X	0
HP51A6	0	0	X	0	0	0	0
HP51A601	0	0	X	0	0	X	0
HP52A6	0	X	0	0	0	0	0
HP52A601	0	X	0	0	0	X	0
HP53A6	0	X	X	0	0	0	0
HP53A601	0	X	X	0	0	X	0
HP54A6	0	X	X	0	0	0	0
HP54A601	0	X	X	0	0	X	0
HP55A6	0	X	X	0	0	0	0
HP55A601	0	X	X	0	0	X	0
HP56A6	0	X	X	0	0	0	0
HP56A601	0	X	X	0	0	X	0
HP57A6	0	X	X	0	0	0	0
HP57A601	0	X	X	0	0	X	0
HP58A6	X	0	0	0	0	0	0
HP58A601	X	0	0	0	0	X	0
HP59A6	X	0	0	0	0	0	0
HP59A601	X	0	0	0	0	X	0
HP510A6	X	0	0	0	0	0	0
HP510A601	X	0	0	0	0	X	0
HP511A6	X	0	0	0	0	0	0
HP511A601	X	0	0	0	0	X	0
HP514A6	0	0	X	0	0	0	0
HP514A601	0	0	X	0	0	X	0
HP515A6	0	0	X	0	0	0	0
HP515A601	0	0	X	0	0	X	0
HP517A6	0	0	X	0	0	0	0
HP517A601	0	0	X	0	0	X	0
HP518A6	0	X	X	0	0	0	0
HP518A601	0	X	X	0	0	X	0

DIP SWITCH DEFINITIONS

$0=0$ FF X=ON
1.Determine Eagle Model Number: To determine the Model Number of the Eagle HP5; remove timer from case by loosening the screw at the lower front of the timer face and lift the mounting
 handle and pull the timer from the case. The model number will be on the left side of the timer. Some models will have a metal plate with the part number, others have a label with the number in that same area.
2. Remove Control: Remove the 655 control from its case by loosening the screw at the bottom of the chrome handle, lifting the handle up and pulling the control forward.
3. Determine Switch Settings: Determine how the 655 DIP switches should be set to retrofit that particular HP5 model using the DIP Switch Setting Guide.
4. Set Time Base: Hold the control to expose the DIP switch assembly on the bottom of unit and set the time base you require on switches 1 , 2 , and 3 .
5. Set Timing Mode: To select the timing mode required, set switches 5,6 , and 7 on the switch assembly as recommended by the DIP Switch Setting Guide.
6. Set Preset Time: Position the 655 control so that you are looking at

SPECIFICATIONS (ALL MODELS)

TIMING RANGES	0.001 SEC to 19.999 SEC
	0.01 SEC to 199.99 SEC
	0.1 SEC to 1999.9 SEC
	1 SEC to 199 MIN 59 SEC
	1 MIN to 199 Hr 59 MIN
TIMING MODES	ON-Delay or Reverse Start Delay
RESET TIME	25 mSEC
CONTROL VOLTAGE 25 mSEC INITIATE TIME	
MEMORY	4000/4001 - EEPROM
	5000/5001 Lithium Battery - Replaceable
POWER CONSUMPTION	5.2VA
TIME SETTING	Front Panel Keypad
TIME REPEAT ACCURACY	$\pm .005$ SEC
DISPLAY	LCD: 4-1/2 Digit, 7/16" High
RELAY	50,000,000 Operations
MECHANICAL LIFE	

INSTANTANEOUS	7 Amps Resistive, 240 VAC
RELAY OUTPUT	2 N.0.
TIMED RELAY	7 Amps Resistive, 240 VAC
OUTPUT	2 N.O., 2 N.C. Contacts
SHORT CIRCUIT	$1 / 4$ Amp Fuse
PROTECTION	
TEMPERATURE	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
RATING	

OPERATING POWER 120 or 240 VAC, $+10 \%,-20 \%, 50 / 60 \mathrm{~Hz}$.

TRANSIENT	Metal Oxide Varistor
VOLTAGE	
PROTECTION	
NEMA RATING	NEMA 12
TERMINALS	Screw Terminals
MOUNTING	Plug In Case
WEIGHT	Net: 25 oz. Shipping: 30 oz.

the keypad on the front of the unit. Push the SET button and four dashes will appear. Depress the SET button a second time and word SET and four zeros will appear. To enter the preset time desired, press the ENT button and preset number will flash seven and go blank. The Model 655 timer is now ready to operate and can be returned to its case or directly into the case of the HP5 that it is replacing. To check or change the preset time; push the SET button and time setting will be displayed. To change the preset time follow the same procedure as indicated previously in this paragraph. When you have completed setting a new preset time, push the ENT button. The preset time can be changed when the 655 is running a cycle or "on the fly". That run cycle will be completed based on the preset at the beginning of the cycle. The new preset will control the next cycle.

NOTE: If the "SET" button is pushed to review or change the preset time, the ENT button must be pushed to return the control to the operating mode.
*NOTE: Dipswitch \#8 inactive

The solid-state 354 is manufactured from a series of computer-tested plug-in circuit boards and assembled virtually without hand wiring. Because it has no moving parts in its logic circuits, its life expectancy is practically unlimited. Even the load relay-the 354 's only significant mechanical component-has a life expectancy of 100,000,000 operations (no load), while the optional solid-state switch module has a virtually unlimited life expectancy. As a result, the 354 achieves an overall reliability that surpasses even the high level achieved by previous Shawnee counters.
CYCLE PROGRESS INDICATION: The Shawnee 354 indicating counter provides cycle progress indication on a four-digit display located immediately above the digital setting number wheels. While the non-indicating

EASY TO SET AT ALL TIMES: The Shawnee counter is easily and accurately set even with work gloves on. Push any of its four toggle levers in any sequence until the number you want appears above it. You can decrease as well as increase each number by pushing the levers up or down. You can change the setting at any time, even during a cycle.
NOISE IMMUNITY: The 354 does not have to be shielded: its transformer power supply, full-wave bridges, buffered logic and other design characteristics render it immune to the electrical noise that is sometimes encountered in industrial environments thus eliminating false starts and reset due to voltage spikes.
PLUG-IN AND DUST-TIGHT: All 354 counters feature true plug-in design and are dust-tight from the front of panel.
$\mathbf{1 0 0 \%}$ ACCURATE AND BOUNCE-PROOF: The repeat accuracy of the Shawnee 354 is 100% at all rated speeds, even in the presence of contact bounce. The 354 has two selectable levels of bounce suppression: a normal level which eliminates false counts at speeds up to 500 per second with reed switch inputs, and 5,000 per second with DC voltage pulses; and a high level, for speeds up to 80 per second with highbounce contact closures (relays, precision switches, etc.).
HOUSING, IT OCCUPIES 40\% LESS: Packaged in a $72 \mathrm{~mm}^{2}$ DIN size housing, the 354 occupies 40% less panel space than previous IC counters. Modern production and assembly techniques have substantially reduced manufacturing costs resulting in a 45% cost saving.
CONTROL VERSATILITY: The 354 operates either as a repeat cycle pulse generator or in single-cycle interval or delayed mode. You choose the kind of control action you want by installing jumpers on the terminal block. It also provides a choice of control output, a standard plug-in SPDT relay or an optional SPST solid-state switch module...plus an independent and separate DC output signal at Terminal 6.

OPERATION

The Shawnee 354 operates on a digital logic circuit with three main elements: input circuits which allow it to count various types of DC pulses; a read-only-memory (ROM) whose output is set by the counter's digital setting number wheels; and a comparator that continuously examines the outputs of the input circuit and ROM. When the start (ready/reset) signal is on, the input circuit begins to count incoming pulses, feeding the total count continuously to the comparator. When input circuit output exactly equals ROM output, the 354 counts out. At that instant, the input circuit automatically turns itself off even if the start signal remains on; it is therefore not necessary to turn off the pulses externally. At the same instant, the 354 provides one of three load control actions depending on how it is wired (see Typical Applications). When the 354 is wired for interval operation, the counter's output device (either the standard SPDT relay or the optional SPST switch module) is energized from the start to the end of the count cycle; so is the DC output at terminal 6.

Shawnee II High Speed Counter

MODEL NUMBER

DIMENSIONS (INCHES/MILLIMETERS)

PANEL CUTOUT
SHOWING DISTANCE BETWEEN ADJACENT CUTOUTS.

SPECIFICATIONS

CYCLE PROGRESS Indicating model only-digit, 0.3 inch, high INDICATOR intensity, blue display

RANGE	1 to 9999 counts or 10 to 99,990, presettable
in 10 count increments.	

PULSE INPUTS Isolated Contact Input (Dry)
Min. Open Resistance 1 megohm
Max. Closed Resistance 20 K ohms.
Switch Requirements $10 \mathrm{~mA}, 30 \mathrm{~V}$
Count Rate and Bounce Immunity
With normal bounce immunity-for Reed
Switches (Terminal 9 jumpered to 13)

Max. Count Rate	$500 / \mathrm{SEC}$
Min. Closed Time	100μ SEC
Min. Open Time	1 mSEC
Max. Open Time for	0.3 mSEC
Any Single Bounce	
Count Rate and Bounce Immunity with maximum	

bounce immunity-for Precision Switches
(Terminal 9 jumpered to 10 and 11)

Max. Count Rate	$80 /$ SEC
Min. Closed Time	30μ SEC
Min. Open Time	6 mSEC
Max. Open Time for	2.5 mSEC

Any Single Bounce

START (READY/RESET) SIGNAL	Voltage Requirements	
	Positive Polarity	ready at 4.5 V MIN
		reset at 1.0 V max.
	Max. Continuous Input	40V
	Ripple Voltage	must not go below MIN req.
	Input Impedance	5K ohms
	Ready-to-Count Time	0.5 mSEC max (after applica tion of voltage to Terminal
	Circuit Reset	1 mSEC max.
	Ready-To-Dropout	20 mSEC max.
	Start Switch Requirements (isolated contact)	
	Switch Rating	$10 \mathrm{~mA}, 30 \mathrm{~V}$
	Min. Open Resistance	1 megohm
	Max. Closed Resistance 20K ohms	
	Latching Mode Operation (interval only)	
	Min. Duration Start Signal	$50 \mu \mathrm{SEC}$
	Max. Duration	continuous
	Start Signal	
	Reset	when signal is removed afte count-out.
LOAD RELAY	LIFE	100,000,000 operations (no load)
	Contact Rating	5 A at $120 \mathrm{VAC}, 3 \mathrm{~A}$ at 28 VDC 1/20 HP at 120 VAC 5A @ 120 VAC Resistive, 5A, 30 VDC Resistive
SOLID-STATE SWITCH MODULE (OPTIONAL)	Switches external DC voltage supply of positive polarity, 4 to 30V, 50 mA max.; factory-wired to Terminals 3 and 5 (detailed description of operation in Installation Instruction)	
DC OUTPUT (TERMINAL 6)	Voltage	$\begin{aligned} & \text { ON- }-24 \mathrm{~V}+10 \% \\ & \text { OFF- }-1 \mathrm{~V} \text { or less } \end{aligned}$
	Current with	with relay -5 mA max. ut relay -40 mA max.
	Impedance on-	0 ohms max., off-10K ohms.
DC POWER	Voltage 24 V	10\%
SUPPLY OUTPUT (TERMINAL 8)	Current 40 mA max	
POWER REQUIREMENTS	120 V $\begin{array}{l}95 \\ \text { inr } \\ \text { run }\end{array}$ 	5 to $132 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ inrush-0. 4A unning-0.04A.
	240 V ($\begin{aligned} & 190 \\ & \text { inrus } \\ & \text { runni }\end{aligned}$	$\begin{aligned} & \text { to } 264 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & \text { h-0.2A } \\ & \text { ng-0.02A. } \end{aligned}$

TEMPERATURE RATING	32° to $140^{\circ} \mathrm{F}\left(0\right.$ to $\left.60^{\circ} \mathrm{C}\right)$	
MOUNTING	Standard	Hardware is provided to mount counter so that it is dust-tight from front of panel.
	Optional	Surface mounting with front facing terminals

When the 354 is wired for delayed control, the output device is energized at the end of the cycle and remains on until the counter is reset; so is the DC output.

When the 354 is wired as a repeat cycle pulse generator, the output device and the DC signal are both off until the end of the count cycle, at which time they are both on for about 80 mSEC From the instant that the output pulse comes on, the 354 stops counting for $500 \mu \mathrm{SEC}$ while it resets; it automatically begins a new cycle and starts counting pulses again immediately after reset. The duration of the pulse generated by the 354 can be easily lengthened or shortened by wiring a capacitor or resistor across terminals 12 and 14 (see Typical Applications).

TYPICAL APPLICATIONS

The Shawnee 354 has a readily accessible 16-point terminal which allows its use with a variety of start circuits and input pulses and to program it for the desired load action. To wire the 354 C so as to suit a particular application is a relatively simple matter that is easily accomplished by selecting one of the examples in each of the following four steps. Combine the four examples for your wiring diagram.

STEP 1 - START CIRCUITS

The 354 accommodates three types of start signals. To wire the counter properly to your start signal, first determine which of the three types applies, then consult the appropriate wiring diagram. NOTE: AC line connections are always made to Terminals 1 and 2.
A. ISOLATED CONTACT (sustained start signal) The external dry start switch must be closed throughout the count cycle. The 354 is ready to count whenever the switch is closed; it resets when the switch is opened.

ISOLATED CONTACT START(EXTERNAL START SWITCH
*Jumper for momentary start in interval mode.)

B. DC VOLTAGE (sustained start signal) The start voltage must be on throughout the count cycle. The 354 is ready to count whenever the voltage reaches +4.5 or $-3 \mathrm{~V} D$; it resets when the voltage drops to +1 or -1V DC.

DC VOLTAGE START
(SUSTAINED START)

STEP 2 - PROGRAMMING

The 354 can be used for delayed or interval control or as a repeat cycle pulse generator. Here again, decide which mode you want, then consult the appropriate wiring diagram. Note that the 354 counts on the break of a contact or decrease of a voltage signal when an external jumper is installed between Terminals 12 and 16, as shown in the diagrams in this step. It can also be programmed to count on make simply by leaving the jumper off.
A. DELAYED MODE. The SPDT relay provides one delayed closing and one delayed opening circuit, and the 354 generates a DC signal at Terminal 6 at the end of the cycle.

B. INTERVAL MODE. The SPDT relay provides one interval opening and one interval closing circuit, and the 354 provides a - 24VDC signal at terminal 6 during cycle.

C. NEGATIVE DC VOLTAGE (momentary* or sustained start signal.) The start signal may be momentary or sustained. The 354 is ready to count whenever the start voltage reaches $-3 V \mathrm{DC}$. It resets at the end of the cycle, when the start voltage is momentary; or as soon after count-out as the start voltage drops between -1 and OV DC, when the start signal is sustained.
D. REPEAT CYCLE PULSE GENERATOR. In this mode, the 354 generates an output of $80 \mathrm{~ms}(\pm 20 \mathrm{~ms})$ at the end of the count cycle; the length of the output pulse can be adjusted as follows:

To shorten the pulse, install a fixed or variable resistor between Terminals 12 and 14 , sizing it according to this formula:

$$
\frac{2.2 t-26.4}{80-t}=R
$$

Where: $\mathrm{t}=$ time in $\mathrm{ms}(\pm 25 \%)$
$R=$ resistance in megohms
To lengthen the pulse, install a capacitor between Terminals 12 and 14 (if a polarized capacitor, install + to 12, - to 14) and size it according to the formua:

$$
\frac{T-0.08}{1.6}=C
$$

Where: $\mathrm{T}=$ time in sec ($\pm 25 \%$)
$\mathrm{C}=$ capacitance in microfarads.

STEP 3 - PULSE INPUTS

The 354 can count from low or high-speed contacts or, by virtue of its built-in pulse shaper, from $D C$ voltage pulses of positive or negative polarity. Choose the wiring diagram that suits your application.

A. LOW-SPEED CONTACTS. The 354 counts input pulses from precision switches, relays, limit switches, etc., at speeds up to 80/SEC.
B. HIGH-SPEED CONTACTS. Input pulses from low-bounce contacts, reed switches, etc., can be counted at speeds up to 500/SEC. In this circuit only, the 354 counts on the break of the pulse switch as received; to count on make, install a jumper between Terminals 12 and 16 ; this is the reverse of the situation that applies to all other 354B.

NOTE: With this circuit, to count on break, remove 12-16 jumper, shown in Step 2.

$$
\Delta \text { Recommended Value }=33 \mathrm{~K}^{\prime}, \mathrm{W} 10^{\circ} \%
$$

C. DC VOLTAGE PULSES. In this circuit, the 354 counts when the voltage decreases from above +4.5 V to below +1 V , or from above 3 V to below -1V, with a jumper installed between Terminals 12 and 16 as shown in Section 2; to reverse the action, simply remove the jumper.

COUNT DC VOLTAGE PULSES TO TERM

STEP 4 -LOAD ACTION

The load action of the 354 depends on the choice of start circuit and programming mode. Loads are always wired to the 354 in the following manner:

If the 354 is equipped with the optional SPST solid-state switch module, its contacts are always available at Terminals 3 and 5 , and its load action is the same as for Load B in the drawings right.
A. DELAYED MODE. The load action in this mode is always the same regardless of the kind of start circuit selected in Step 1; but the start signal must remain on during the entire count cycle, as the counter resets when the start signal is removed.

DELAY MODE				
	Before Start	During Timing		End of Cycle
Start SW				Reset to Before Start
LOAD A				
LOAD B				
-241/-27 VDC at Term6				

B. INTERVAL MODE WITH SUSTAINED START. In this mode also, the counter resets when the start signal is removed.

INTERVAL MODE-SUSTAINED START				
	Before Start	During Timing		End of Cycle
Start SW				Reset to Before Start
LOAD A				
LOAD B				
$-241 /-27$ VDCat Term6				

C. INTERVAL MODE WITH MOMENTARY START. Because of the 354's electronic latch capability, it can provide interval control with a momentary negative DC voltage start signal, in which event the 354 resets at the end of cycle. But the counter will also operate with a sustained start signal, in which case it resets when the start signal goes off, as described above.

INTERVAL-MOMENTARY OR SUSTAINED START			
	Before Start	During Timing	End of Cycle
Start SW			
LOAD A			
LOAD B			
$-241 /-27$ VDC at Term6			

D. REPEAT CYCLE PULSE GENERATOR. When this mode is selected, the start signal must remain on continuously. The 354 generates an output pulse at the end of each count cycle, then resets and repeats automatically. At least 500μ s is required for resetting, between the last count of one cycle and the first count of the next. Count pulses can be of unequal length - long and short as shown in the diagram - provided that they meet the minimum requirements listed in the SPECIFICATIONS.

SAVE 40\% IN PANEL SPACE AND COST: Packaged in a $72 \mathrm{~mm}^{2}$ DINsize housing, the 356 occupies 40% less panel space than previous IC timers. Modern production and assembly techniques have substantially reduced manufacturing costs resulted in a 45% cost saving.
LOW INVENTORY COSTS: Each Shawnee 356 covers the active count range of 1 to 9,999 , easily satisfying the vast majority of industrial requirements and thus greatly reducing inventory.

DIMENSIONS (INCHES/MILLIMETERS)

MODEL NUMBER

ACCESSORIES

Surface mounting bracket kit
0353-260-27-00
Retrofit kit
0305-265-61-70

The 356C Directly Replaces 356B \& 356A.

Shawnee II Digital Counter

A compact version of the 336 counter, the ATC 356 is its exact functional duplicate. Packaged in a $72 \mathrm{~mm}^{2}$ DIN-size housing, it occupies 40% less panel space and costs proportionately less. Modern production and assembly techniques have all but eliminated hand wiring, enhancing the reliability and life expectancy of the 356 .
FAST, ACCURATE AND BOUNCE-PROOF: The repeat accuracy of the 356 is 100%. It maintains full accuracy even at pulse rates up to 4,000/minute, even with pulses that are as brief as 1 millisecond, and even in the face of severe contact bounce, which it ignores by virtue of an extremely effective anti-bounce circuit.
EASY TO SET AT ALL TIMES: The Shawnee counter is easily and accurately set even with work gloves on. Push any of its four toggle levers in any sequence until the number you want appears above it. You can decrease as well as increase each number by pushing the levers up or down. You can change the setting at any time, even during a cycle.
PLUG-IN AND DUST-TIGHT: All 356 counters feature true plug-in design and can be replaced in seconds without disturbing the housing or disconnecting the wiring. The dial assembly is gasketed so that the counter body is dust-tight from the front of panel.
CYCLE PROGRESS INDICATION: The Shawnee 356 indicating counter provides cycle progress indication on the four-digit display located immediately above the digital setting number wheels. When the counter is in the reset condition, the VFD display is blank. During the cycle, the display counts up from 0 , thus always indicating the number of counts that have elapsed since the start of cycle. At countout, the display shows the total elapsed count and thus equals the numbers on the digital setting wheels.
COMPUTER-TESTED RELIABILITY: The solid-state 356 is manufactured from a series of computer-tested plug-in circuit boards and assembled virtually without hand wiring. Because it has no moving parts in its logic circuits, its life expectancy is practically unlimited. Even the load relay - the 356 's only significant mechanical component - has a life expectancy of $10,000,000$ operations (no load). As a result the 356 achieves an overall reliability that surpasses even that achieved by previous Shawnee counters.
NOISE IMMUNITY: The 356 does not have to be shielded: its transformer power supply, full-wave bridges, buffered logic and other design characteristics render it immune to the electrical noise that is sometimes encountered in industrial environments thus eliminating false starts and reset due to voltage spikes.

OPERATION

The Shawnee 356 operates on a digital logic circuit with three main elements: a pulse circuit; a read-only-memory (ROM) whose output is set by the counter's digital setting number wheels; and a comparator that continuously examines the outputs of the pulse circuit and ROM.

When power is applied (start signal on), two things happen simultaneously; the instantaneous DPDT relay is energized transferring both sets of contacts, and the pulse circuit begins to count each input pulse whose duration is at least 1 millisecond. The pulse circuit accumulates the count and feeds the total continuously to the comparator. When pulse circuit output exactly equals the output of the ROM, the comparator causes the 356 to count out.

At this point, (1) the DPDT delay relay is energized, immediately transferring both sets of contacts and (2) the pulse circuit turns itself off automatically. Since the pulse circuit stops counting even if the start signal remains on, it is not necessary to tie up one of the 356's delayed contacts to do this job.

To reset the 356, power must be removed from terminal 1 (L1) for 75 milliseconds or more. The 356 operates in the on-delay mode only, always resetting whenever there is a power outage and starting a new cycle when power is restored.

		Switching Sequence*		
RELAY	CONTACTS	Before Start	During Timing	End of Cycle
Instantaneous	$14-9 / 6-8$			
	$14-10 / 6-7$			
Delayed (D2)	$11-12 / 4-5$			
	$11-13 / 4-3$			

*Assumes a sustained closed start signal (i.e. longer than the setting on the digital display)
BLACK- CIRCUIT CLOSED
GRAY- CIRCUIT OPEN

WIRING

instantaneous contact

TERMINAL WIRING: INDICATING MODEL

SPECIFICATIONS

RANGE	1 to 9999 counts or 10 to 99,990, presettable in 10 count increments.
COUNT INPUT	2300/MIN with 1:1 on-off time
	4000/MIN with 1 mSEC on: 13 mSEC off
	500/MIN with 20 mSEC on and 100 mSEC off
	Wired for count and repeat operation
	Min. Pulse ON Time: 1 mSEC
	Min. Pulse OFF Time: 13 mSEC
	Ready-To-Count 10 mSEC after application of
	Time power to terminals 1 and 2
	Bounce Immunity 6 mSEC (max. bounce open time)
	Pulse Contact Req. 30mA (at line voltage)

CYCLE PROGRESS 4 digit, 0.3 inch, high intensity, blue display. INDICATOR

REPEAT ACCURACY	100\%	
RESET TIME	75 mSEC minimum	
MINIMUM SETTING	1 count	
COUNT	Single Cycle	interval or delayed
CONTROL MODES	Repeat Cycle	pulses
LOAD RELAYS	Number	two, one instantaneous and one delayed; both plug-in, DPDT
	Operate Time	20 mSEC max.
	Release Time	instantaneous -20 mSEC, max. delayed-75 mSEC, max.
	Contact Rating	5 A at 120 VAC . 2 A at 240 VAC, 0.1 A at 125 VDC
	Life	100 million operations (no load.

TEMPERATURE 32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
RATING
POWER

REQUIREMENTS \begin{tabular}{ll}

120 V \& | $95-132 \mathrm{~V}$ at 50 or 60 Hz |
| :--- |
| inrush -0.4 A |

\cline { 2 - 3 } | running -0.08 A |
| :--- |

\hline 240 V \& | $190-264 \mathrm{~V}$ at 50 or 60 Hz |
| :--- |
| inrush -0.2 A |
| running-0.04A |

\hline
\end{tabular}

TERMINALS	16 screw terminals accessible at rear; integral wiring diagram on housing.	
HOUSING	Plug-in design; completely gasketed, dust-tight when panel-mounted.	
MOUNTING	Standard	Hardware is provided to mount timer so that it is dust-tight from front of panel.
ACCESSORIES See Accessory section of catalog	Optional	Surface mounting without and with front-facing terminals.
WEIGHT	NET: $1 \mathrm{lb} ., 7 \mathrm{oz}$.	SHIPPING: 2 lbs

	POWER SUPPLY
	PULSE INPUT
	INDEPENDENT LOADS
	DEPENDENT LOADS
	MOMENTARY STARTING - CONTACT
	-SUSTAINED STARTING CONTACT
	-NORMALLY CLOSED RESET CONTACT
	LOAD DE-ENERGIZED
	LOAD ENERGIZED
	DELAYED CONTACTS
	tacts transfer
	${ }^{12}$ simultaneously when
	unit
	all digits are zero.

All timers shown in "before start" position. Diagrams shown with power off unless otherwise marked.
Maximum load current through any load carrying contact is 5 amperes.
Pilot light leads are brought out to terminal block. Pilot light can be wired to show practically any
desired function; unit energized, cycle unning, instantaneous or delayed switch closed, etc.
ON DELAY-Reset on power failure.
(PS) INSTANTANEOUS CONTACTS
Contacts are transferred when power supply is energized; transferred back, as
shown when de-energized.

SUSTAINED START

MOMENTARY START/SUSTAINED START

COUNT, PULSE AND REPEAT CYCLE

NOTE: Minimum sw open time: 100 ms .
Minimum sw close time: 20 ms .
Output Pulse length - approx. 50 ms.

DIMENSIONS (INCHES/MILLIMETERS)

PANEL CUTOUT
SHOWING DISTANCE BETWEEN ADJACENT CUTOUTS.

TERMINAL WIRING: INDICATING MODEL

The 366C Directly Replaces 366B \& 366A.

Based on a powerful built-in microcomputer, the compact 366 is the most versatile and cost-effective counter ATC has ever built. No industrial counter has ever achieved a higher level of reliability and ruggedness than the 366. It has no moving parts in its electronic logic circuits, only plug-in circuit boards which are computer-tested for reliability and assembled virtually without hand wiring. Its few mechanical components have been selected for reliable service; long life relays with heavy-duty contacts and rotary set point selector switches with extremely low wear characteristics.
CONTACT BOUNCE AND NOISE IMMUNITY: No industrial counter offers greater immunity to noise and contact bounce than the 366. Most noise encountered in typical industrial environments is blocked by such design features as full-wave bridges and a transformer power supply... so effectively that the 366 does not have to be shielded. Furthermore the 366 's microcomputer employs redundant sampling logic to detect and reject any noise pulse that manages to penetrate its defenses. Through the same powerful technique, the microcomputer also detects and rejects even severe contact bounce. As a result, the 366 maintains absolute count accuracy and is virtually immune to false starts and reset, even in difficult industrial environments.
COMPUTATION: Through its internal microcomputer, the 366 keeps track of the set point throughout the count cycle. Whenever there is a change in set point, even during a cycle, it instantly recomputes the remaining count and accurately determines the number of counts before count-out. This unique capability is especially valuable in the countdown modes as it allows you to shorten or lengthen a cycle without loss of accuracy.
PROGRAMMABLE DISPLAY: The 366's three-digit cycle progress display will count UP to or DOWN from the set point, depending on the position of an internal jumper. After count-out, the display will either STOP or GO. In the UP \& GO program, the display counts up to the set point and continues to count after count-out; in the DOWN \& GO mode, it counts down to the set point, then begins to count up (from zero) after count-out.
WIDE RANGE: Each 366 Long-Ranger covers the overall span of 1 to 99,900 counts in three switch-selected ranges of 1 to 999,10 to 9990 or 12 to 99,900 . It can be optimized within any selected range simply by removing appropriate selector knobs (e.g. with the counter in the 1 to 999 range, you can obtain a tamper-proof span of 1 to 99 by setting the left selector at 0 and removing the knob.) To the right of the three-digit display, a counting bar (-) blinks on each time a pulse is received. At left, a marker ($\boldsymbol{\nabla}$)turns on when the delayed relay is energized at count-out.

SELF-DIAGNOSTICS: A built-in diagnostic program lets you verifywithout using any test instrument--that the counter's functional circuits are operating properly. Just follow the instructions on the flip-up card, using the counter's own display for the test readout. If all self-test displays are correct, any malfunction is almost certainly due to external circuits or to the relays, not the counter.

COMPACT, PLUG-IN AND DUST-TIGHT: Packaged in a $72 \mathrm{~mm}^{2}$ DIN housing, the 366 occupies 40% less panel space than most other industrial counters. It is a true plug-in counter that can be replaced in seconds without disturbing housing or wiring. The 366 is also fully gasketed and 0 ring sealed to be dust and water-tight whether panel or surface-mounted.

POSITIVE RESET TIME AND PULSE LENGTH: Digitally clocked by the microcomputer, the 366's reset time is consistently of the same duration, regardless of variations in line voltage, power supply or cycle length. When the 366 operates in repeat-cycle mode, the output pulse is also digitally clocked so that both the time of occurrence and its duration are consistent from cycle to cycle.

TYPICAL INSTALLATIONS

(85) POWER SUPPLY	
	1) PULSE InPUT
INDEPENDENT LOADS	
DEPENDENT LOADS	
$\begin{aligned} & - \text { O-MOMENTARY STARTING } \\ & \text { CONTACT } \end{aligned}$	
$-\infty$ - SUSTAINED STARTING	
$\xrightarrow[-2-\text { NORMALLY CLOSED }]{\text { RESET CONTACT }}$	
0 LOAD DE-ENERGIZED	
X LOAD ENERGIZED	
(PI) DELAYED CONTACTS	
simultaneously when unit "times out" and all digits are zero.	

All timers shown in "before start" position. Diagrams shown with power off
unless otherwise marked.

Maximum load current through any load carrying contact is 5 amperes.
Pilot light leads are brought out to terminal block. Pilot light can be wired to show practically any desired function; unit energized, cycle running, instantaneous or delayed switch closed, etc.
ON DELAY-Reset on power failure

MODEL NUMBER

MODEL NUMBER 366 C			P	X
RANGE 1-999, 10-9990 or 12-99900 (switch selected)	400			
Special	000			
VOLTAGE \& FREQUENCY 120 VAC $50-60 \mathrm{~Hz}$		Q		
240 VAC, $50-60 \mathrm{~Hz}$		R		
$24 \mathrm{VAC}, 50$ or 60 Hz		T		
24 VDC		N		
Special		K		

ARRANGEMENT

Selectable Count Up or Count Down with Display
Selectable Count Up \& Go or
Count Down \& Go with Display
FEATURES
Basic plug-in unit
Standard unit
X
ACCESSORIES

Surface mounting bracket kit	$0353-260-27-00$
Retrofit kit	$0305-265-61-70$

MOMENTARY START/SUSTAINED START

COUNT, PULSE AND REPEAT CYCLE

NOTE: Minimum sw open time: $\mathbf{1 0 0} \mathrm{mSEC}$
Minimum sw close time: 20 mSEC
Output Pulse lengith - approx. 50 mSEC

OPERATION

As soon as power is applied to terminals $1 \& 2$ of the counter, the instantaneous relay is energized and changes the states of its associated contacts (8-6-7 \& 9-14-10). The counter then looks for terminal 15 (pulse input terminal) to receive input pulses. When the number of pulses received equals the number of counts set on the front face, the delayed relay energize and changes the states of its associated contacts (3-4-5 \& 13-11-12).

The counter is reset by removing power from terminal 1 for at least 60 msec . At reset, both relays revert back to their shelf (without power) state. To the right you will find some typical applications.

SETTING SWITCHES: The three digits are set with the rotary switch knobs beneath each digit. These knobs can be rotated in either direction (CW or CCW), and they are "pull" removable if digit set security is desired. When the 366 is in the "Count Down" mode, changing one or more digits, during counting, will instantly be reflected by an equivalent change in the counter's display. In the "Count Up" mode, changing digits immediately changes the count-out set point. Setting all three digits to zero will cause instant count-out in any display mode.

THE DISPLAY: A high intensity blue fluorescent display consists of three digits and a Counting Bar with a special Count-Out symbol. The Counting Bar appears to the right of the digits and blinks once every count, regardless of range. When the delay relay is energized at count-out, a triangular Count-Out symbol appears to the left of the digits.

REMOVE THE 366C FROM ITS HOUSING TO MAKE CHANGES SHOWN BELOW.

COUNTING DISPLAY MODES: Down \& Stop (30)
Up \& Stop (30)
Down \& Go (50)
Up \& Go (50)
CHANGING THE RANGE: The 366B has three ranges:
$\mathrm{x} 1=$ Counts single pulses to 999
$\mathrm{x} 10=$ Counts every tenth pulse to 9,990
12 = Counts every 12th pulse
Each range is selected using finger force on the white plastic lever behind the front face of the counter. In two of the three possible lever positions, an indicator will appear in a range window located on the front face below and between the rotary switch knobs. When nothing appears in these windows, the counter is understood to be in the x 1 range.

SPECIFICATIONS

MODELS	Display model only for operation at 120, 240 or 24 VAC; and 24 VDC. Unit counts on break (i.e. when count input switch opens). Unit operates in on delay mode only.
RANGE	Switch-selectable ranges of 1 to 999, 10 to 9990, and 12 to 99900.
REPEAT ACCURACY	100\% (+0 count on all ranges)
RESET TIME	Clocked at 40 mSEC
COUNT INPUT	AC
	Max. count rate (symmetrical input) 1000/MIN
	Min. pulse on time 20 mSEC
	Min. pulse off time 30 mSEC
	DC
	Max. count rate 2000/MIN (symmetrical input)
	Min. Pulse on time 15 mSEC
	Min. Pulse off time 15 mSEC
	Bounce Immunity 5 mSEC (max. bounce open time)
	Pulse Contact Requirement
COUNT	Single Cycle interval or delayed
CONTROL MODES	Repeat Cycle pulse (occurrence and duration 50 mSEC clocked)
DISPLAY	Cycle Progress \quad 3-digit display, 0.3 inch, highintensity, blue programmable modes: DOWN \& STOP, DOWN \& GO, UP \& STOP or UP \& GO.
	Count-Out $\quad \begin{gathered}\text { Vount-out } \\ \text { cont }\end{gathered}$
	Counting Bar display; blinks on when count switch is closed, when pulse is received
HOUSING	$72 \mathrm{~mm}^{2}$ DIN size; plug-in design; fully gasketed, dust and water-tight in panel mounted installations. NEMA 4 when mounted per installation instructions
TERMINALS	16 screw terminals accessible at rear; integral wiring diagram.

COUNT INPUT	Voltage Model	
	120 VAC Model	Turn On 60V 3.5 mA (nom.
		Turn Off 30V 2.4 mA (nom.)
		10 mA max. current at 120 V
	240 VAC Model	Turn On 120V 3.5 mA (nom.)
		Turn Off 60V 2.4 mA (nom.)
		10 mA max. current at 240 V
	24 VAC Model	Turn On 12V 9.5mA (nom.)
		Turn Off 4V 3.8 mA (nom.)
		30 mA max. current at 24 V
	24 VDC Model	Turn On 15 VDC 2.5 mA (nom.)
		Turn Off 3 VDC . 5 mA (nom.)
		5 mA max. current at 24 V
LOAD RELAY	Number	one instantaneous and one delayed
	Type	DPDT, Form C
	Operate	Time 13 ms , max.
	Release Time	Time 10 ms , max.
	Contact Ratings	7A at 120, 240 or 24 VAC, 1/6 HP.
	LIFE	100 million operations (no load)
POWER	120 V	95 to $132 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ inrush-0.3A running -0.06 A at 120 VAC
	240V	$\begin{aligned} & 190 \text { to } 264 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & \text { inrush- } 0.15 \mathrm{~A} \\ & \text { running- } 0.03 \mathrm{~A} \text { at } 240 \mathrm{VAC} \end{aligned}$
	24 VAC	19.2-26.4 VAC, 50 or 60 Hz Inrush-1 A Running-0.25 A at 24 VAC
	24 VDC	19.2-26.4 VDC, 5\% ripple Running - .120 A at 24 VDC
TEMPERATURE RATING	32 to $122^{\circ} \mathrm{F}\left(0\right.$ to $50^{\circ} \mathrm{C}$)	
MOUNTING	Standard	hardware is provided for front-of-panel mounting.
	Optional	Surface-mounting brackets with front-facing terminals
WEIGHT	NET: AC-1 lb., 6oz. DC-10 oz.	
	SHIPPING: AC - $2 \mathrm{lbs} ., \mathrm{DC}-1 \mathrm{lb} ., 4 \mathrm{oz}$.	

The 376 is available as a SINGLE PRESET or a DUAL PRESET COUNTER. The Dual Preset Counter can be set as a Batch Counter. Both the Single Preset and the Dual Preset versions have an internal Totalizing Counter which will accumulate counts over numerous cycles. The 376 can be set up for Interval Counting Mode using a separate start signal, and can also be set up for count with Inhibit Mode.

HIGH SPEED COUNTING: The Single Preset 376 counts at a maximum frequency of 10 kHz . In addition to its high speed capabilities, a debounce circuit can be enabled to limit the count frequency to 100 Hz .

COUNTING MODES: The 376 is available as a Single Preset or a Dual Preset Counter. The Dual Preset Counter can be set as a Batch Counter. Both the Single Preset and the Dual Preset versions have an internal Totalizing Counter which will accumulate counts over numerous cycles. The 376 can be set up for Interval Counting Mode using a separate Start Signal, and can also be set up for Count with Inhibit Mode.

INPUTS/OUTPUTS: Two count inputs are available with the 376. These inputs can be set to count Uni- and Bi-directionally. They can also be set to accept Quadrature inputs and can multiply the quadrature signals X1, X2 and X4. Input 2 also operates as the Start input in Interval Mode and as the inhibit input in Count with Inhibit Mode.

These two inputs can be set to accept Current Sinking or Sourcing signals, and there is a High/Low Threshold (Bias) setting allowing the input of TTL level signals.
Two types of outputs are available. The Relay outputs are rated for 7 A at 250 VAC and 30 VDC. The NPN Transistor outputs are current sinking and are rated for 100 mA at 30 VDC. These outputs are field replaceable. Each output can be set to either Latch ON, Remain ON for a Time Delay, or turn OFF at a Preset.

SCALE FACTOR: A Prescale value can be set which allows the operator to view and set counts using real units of measure. The Prescale value is a multiplier which is applied to the count inputs to determine the display and preset values. The Prescale value can be set from 0.00001 to 9.99999 . The 376 also allows setting of the decimal point position in any of 6 positions.
RESETTING THE COUNTER: The Counter can be reset using the Reset key on the panel or by using the external Reset Inputs. There are three current sinking external inputs. Each one is dedicated to resetting the Process, Batch and Totalizing Counters. In addition, the 376 can be set to either retain its count or reset upon power failure.

OPERATOR PANEL AND HOUSING: The 376 operator panel is dust and water tight and measures a compact $72 \mathrm{~mm}^{2}$. The panel features a high intensity blue vacuum fluorescent display. The display uses 8 digits for its English language operator prompts and 6 digits to display the count value. For operator use, there are 4 snap action keys which allow the operator to easily view Process Count, Batch Count, Totalizer Count, Presets, Scale Factor, Output Settings and Decimal Point position. The 376 can be set to lock out various displays from the operator. One key is dedicated to Resetting the Counter. This key can also be locked out.

SET-UP: Set-up of the 376 is accomplished using 16 DIP switches which are located inside the unit. These DIP switches give a visual indication of how the Counter is set-up, and eliminate the use of complex programming codes. Field replacement of the unit is quick. To replace a unit, remove the old unit from its housing, set the DIP switches in the new unit to the same positions, and plug the new unit in. It's that simple.

AUXILIARY POWER SUPPLY: To power sensor and encoder inputs, a regulated 12 VDC auxiliary power supply is provided. This supply can provide 120 mA of current, and is short circuit

Digital Counter

- 6 Digit Count Display
- Single Preset, Dual Preset, Batch Counting Modes
- Interval Counting Mode with Separate Start
- Count with Inhibit Mode
- Internal Totalizing Counter
- Prescaler 0.00001 to 9.99999
- 6 Decimal Point Positions
- High Intensity Blue V-F Display
- Easy English Language Operator Prompts
- $72 \mathrm{~mm}^{2}$ Panel - Dust, Water Tight
- 4 Snap-Action Keys
- Plug-in Housing (Quick Replacement)
- Sinking, Sourcing, TTL Inputs
- Single, Bidirectional, and Quadrature (X1, X2, X4) Counting
- Relay or Transistor Outputs
- Outputs Latched, Timed, or Off at Presets
- Regulated 12 VDC Aux. Power Supply

OPERATION

The Series 376 Preset Counter is a predetermining counter that will count high speed unidirectional, bi-directional, or quadrature input signals, and will activate an output when the predetermined preset value is reached. The unit is available in both Single and Dual Preset models, and includes an internal totalizer. Also, the 376 counter will operate as a Batch Counter using the second preset as a Batch Preset. The Series 376 comes with a variety of counting modes. The operation of each counting mode is described below.
COUNT UP FROM ZERO TO A GIVEN PRESET: The Output in the Counter is activated when the Count equals the Preset. In the Dual Preset Model, the Counter counts up from zero and Output 1 is activated when Preset 1 is reached and Output 2 is activated when Preset 2 is reached.
COUNT DOWN FROM A PRESET TO ZERO: When Reset is pressed, the Counter is set to the Preset Value. When the Count Value equals zero, the Output is activated. In the Dual Preset Model, the Counter counts down from the High Preset value and activates one Output when it reaches the Low Preset Value; the other Output is activated when the Counter counts down from the Low Preset Value and reaches zero. INTERVAL MODE: In this mode, the Counter will not begin counting until Input 2 is turned ON, indicating a Start Signal. Once the Start Signal is received, the Output will turn ON and the Counter will count. The Out- put will then turn OFF at the preset or zero. The Start Signal must be activated each time the process is reset, even when the Counter is set to Auto Reset
BATCH MODE - DUAL PRESET MODELS ONLY: In the Batch Mode, Input 1 is the Count input and will turn ON at Preset 1. Each time Output 1 turns ON, the Batch Counter will record a count. When the Batch Counter value equals the value in Preset 2, Output 2 will turn ON. The Batch Mode must be Manually Reset (unless T2 is set to 00.00 (. $5 \mathrm{w} /$ AR) for Auto Reset).
TIMED OUTPUTS: The Outputs can be delayed before turning OFF by setting time delay values for each output. Once the Preset is reached, a time delay, according to the time value set, will occur before the outputs turn OFF. This value can range from 0.00 SEC (OFF at Preset) to 99.99 SEC (Latched ON). In addition, the outputs can also be set to turn OFF upon reaching the preset for the other output in the Dual Preset Model.

SCALE FACTOR: A Prescale value can be set to allow viewing and setting counts using real units of measure. The Prescale value is a multiplier which is applied to the count in-put(s) to determine the count display and preset values. The Prescale value can be set from 0.00001 to 9.99999 . In addition, the decimal point can be set on the display to any one of 6 positions.

WIRING

376 TERMINAL WIRING

OUTPUT WIRING

RELAY*

* (Contacts to be wired with same polarity)

NPN TRANSISTOR (Open Collector)

COUNT INPUT WIRING - SINK INPUT SIGNAL

COUNT INPUT WIRING - SOURCE INPUT SIGNAL

SPECIFICATIONS

MODELS	Single and Dual Preset with either NPN (Solid State) or Relay Outputs.	MAXIMUM COUNTING FREQUENCY	$10 \mathrm{kHz} \quad$ Count Up Mode
			$9 \mathrm{kHz} \quad$ Count Down Mode
COUNT INPUT MODES	Bi-Directional		Reduce by 3 kHz when Totalizing Counter is enabled
	Quadrature X1		Reduce by 2 kHz when Auto Reset is enabled
(SWITCH SELECTABLE)	Quadrature X2		Min. pulse $10 \mu \mathrm{SEC}$ on; $90 \mu \mathrm{SEC}$ off.
	Quadrature X4	REMOTE RESETS	Count, Batch, Totalizer
	Count with Inhibit		Min. 15 mSEC pulse
	Interval with Start Input		Pulled to 5 V via 8 K ohm res.
SETTINGS (FRONT OF PANELS)	Presets 1 to 999,999		Active Low. ViL $=0.5 \mathrm{~V}$ Max.
	Scale Factor 0.00001 to 9.99999		Max. current $=.625 \mathrm{~mA}$.
	Timed Outputs 00.01 to 99.98 SEC	OUTPUT SOLID STATE	Current Sinking
	Latched		I sink $=100 \mathrm{~mA}$ Max.
	Off at Preset		VoL $=1.0 \mathrm{VDC} \mathrm{Max}$.
	Decimal Position 0 to 6		Max. Voltage $=30 \mathrm{VDC}$
OPERATING FEATURES (SWITCH SELECTABLE)	Count Up or Count Down	OUTPUT RELAY	Life 100 million operations (no load)
	Count/Go or Count/Stop		Contact Rating 7 amp @ 30 VDC or 250 VAC,
	Sink or Source Count Input		1/4 HP
	High or Low Threshold (Bias)	DC SUPPLY	12 VDC Regulated, $\pm 4 \%$ Max. current $=120 \mathrm{~mA}$
	Auto Reset at High preset (Count Up) Zero (Count Down) After Timed Output	MEMORY	Non Volatile EEPROM
			230,000 Power Losses MIN
	Totalizer		10 Year Retention
	Dual Preset/Batch mode	DISPLAY	8 Digit, 14 Segment
	Security lockout Access to Presets Access to T1, T2, SF, DP Front panel Reset		$5 \mathrm{~mm} \times 4.1 \mathrm{~mm}$
			Blue Vacuum Fluorescent
		OPERATING TEMPERATURE	$0^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$
	Reset on Power Up		- ${ }^{\text {to } 140}$
COUNT INPUTS	Sink - 9.4K ohm pull up	HUMIDITY	0\% to 80\% RH Non-condensing
	Max. current $=1.25 \mathrm{~mA}$		
	Source - 4.7K ohm pull down	POWER REQUIREMENTS	120 VAC 95-132 VAC
	Max. voltage = 30 VDC, @ 7 mA		240 VAC 190-264 VAC $50 / 60 \mathrm{~Hz}$
	$\begin{aligned} \hline \text { High Bias ViL } & =5.5 \mathrm{~V} \text { Max. } \\ \text { ViH } & =7.5 \mathrm{~V} \text { Min. } \end{aligned}$		Max. Power = 8 VA
		TERMINALS	16 screw terminals located accessible from rear
	$\begin{array}{ll} \text { Low Bias } & \text { ViL }=1.5 \mathrm{~V} \text { Max. } \\ & \mathrm{ViH}=3.75 \mathrm{~V} \text { Min. } . \end{array}$	HOUSING	Plug in, $72 \mathrm{~mm}^{2}$ DIN Fully Gasketed, Dust and Watertight.
	Debounce - reduces count Input 1 to 100 Hz (Input 2 no debounce.)		
		WEIGHT	1.47 lbs . SHIP 2.0 lbs.
	Interval start requires 15 mSEC minimum pulse. (Can be momentary or sustained.)		

ACCESSORIES

Surface mounting bracket kit 353-260-27-00:
Round Cutout Retrofit kit 305-265-61-70:
Square Cutout Retrofit kit 376-320-01-00:
For prices and further information, consult factory.

SETTING THE COUNTER

To set the Counter, there are four push-button keys located on the front of the unit. These buttons are provided to allow the user to select, change and save various values. These key operations are dependent on the DIP Switch settings of the unit (see below).
In addition to the normal counting modes of the unit, the 376B has the capability of operating as a Batch Counter and a Totalizer Counter. When these modes are activated, the functions of the Counter change accordingly. Pressing the RESET key, with the Count, Batch, or Totalizer value displayed, will reset that value.
This figure shows the front of panel with the Process Count value displayed. Pressinq SELECT will scroll through a menu of options.
 After one of these options is displayed for a second, the value for this option is automatically displayed. Once the option value is displayed, pressing the < key will move one digit to the left and the ${ }^{\wedge}$ key will increment the value by one. Then the SELECT key must be pressed to save the new value. Pressing RESET will return to the Process Count display. If SELECT is not pressed after a change, RESET will return to the count display and the change will not be entered.

Selections in addition to Process Count are:
Totalizer - counts accumulated since last Totalizer Reset. When the total counts exceed 00000376 99,999,999 the Totalizer will blink Pressing
RESET will scroll through the actual value, pressing RESET a final time will reset the value to zero.

Batch - number of cycles elapsed in Batch Mode.

Preset 1/Preset 2 - value compared with the actual count. When the Preset Value is

displayed, the Preset LED on the panel will light, indicating which preset is displayed.

Prescale - this factor will scale the input counts. The count signal is multiplied by the
 prescale value to determine the count display. The prescale value can range from 0.00001 to 9.99999 .
NOTE: If the prescale value is greater than 1 , the out put will energize when the count value passes the preset value. Output 1/ Output 2 - time delay setting for outputs.
Decimal - the number of decimal positions for

```
LATCHED
``` the display.
When the Counter reaches its Presets, the \(\quad\) D P Outputs will activate and the LEDs on the panel will flash, indicating which output is activated.

DIP SWITCH SETUP-To set up the Counter for operation, a series of DIP switches located inside the unit must be set.

\section*{COMPLIANCE}

IEC/EN 61326 (EM/EMC)
IEC/EN 61010 Revision 32010 Edition (Safety)
UL 61010 Revision 32010 Edition (Safety)

\section*{DIMENSIONS}

CURus Cable Size (AWG): 16-13
Stud Hole for Lug (inch): 0.137
Tightening Torque (lb-inch): 7

\section*{TERMINAL CONNECTIONS}

ORDERING INFORMATION
\begin{tabular}{|l|c|c|c|c|c|}
\hline PART N0. & OUTPUT 1 & OUTPUT 2 & OUTPUT 3 & \begin{tabular}{c}
COMMUNICATION \\
(RS485)
\end{tabular} & \begin{tabular}{c}
SUPPLY \\
VOLTAGE
\end{tabular} \\
\hline ATC500000100 & Relay & Relay & Relay & & \(85-270 \mathrm{VAC/DC}\) \\
\hline ATC500000400 & Relay & Relay & Relay & Yes & \(85-270 \mathrm{~V}\) AC/DC \\
\hline ATC500010500 & Relay & 12V DC SSR & 12 V DC SSR & Yes & \(85-270 \mathrm{~V} \mathrm{AC/DC}\) \\
\hline ATC500200100 & \(4-20 \mathrm{ma}\) & Relay & Relay & & \(85-270 \mathrm{~V} \mathrm{AC/DC}\) \\
\hline ATC500200400 & \(4-20 \mathrm{ma}\) & Relay & Relay & Yes & \(85-270 \mathrm{~V}\) AC/DC \\
\hline ATC500300100 & \(0-10 \mathrm{~V}\) & Relay & Relay & & \(85-270 \mathrm{~V}\) AC/DC \\
\hline ATC500300400 & \(0-10 \mathrm{v}\) & Relay & Relay & Yes & \(85-270 \mathrm{~V}\) AC/DC \\
\hline
\end{tabular}

Note: Other models, options and accessories available. Please consult factory.

FUNCTIONAL SPECIFICATIONS
Control Action
1) PID
2) \(\mathrm{ON}-\mathrm{OFF}\)

Proportional Band (P) 1.0 to \(400.0^{\circ}\) Intergral Time (I) 0 to 9999 sec . Derivative time (D) 0 to 9999 sec . Cycle Time \(\quad 0.1\) to 99.9 sec. Hysteresis Width \(\quad 0.1\) to \(99.9^{\circ}\) Manual Reset Value -19.9 to \(19.9^{\circ}\)

\section*{1/16 DIN Temperature Controller}
- Dual Display, 4 digit, 7 segment LED \(\cdot{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) selectable
- TC/RTD
- PID ON/OFF Control
- Field selectable Control Output (Relay or SSR)
- Auxiliary Output: Relay / SSR
- Easy to Use

- 2 Setpoints

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline DIGITS & 4 digit, 7 segment LED Dual Display Height of Upper display: 0.3785" Height of Lower display: 0.2720" \\
\hline LED INDICATIONS & Relay On, Tune, Soak Time \\
\hline INPUTS & Thermocouple (J,K,T,R,S) / RTD (Pt100) \\
\hline SAMPLING TIME & 250 ms \\
\hline INPUT FILTER (FTC) & 0.2 to 10.0 sec \\
\hline RESOLUTIION & 0.1/1 (Fixed \(1^{\circ}\) for R \& S type TC input) \\
\hline \multicolumn{2}{|l|}{TEMPERATURE UNIT \({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) selectable} \\
\hline INDICATION & For J, K, \& T inputs: \(0.25 \%\) of F.S. \(\pm 1^{\circ}\) \\
\hline ACCURACY & For R \& S inputs: \(0.5 \%\) of F.S. \(\pm 2^{\circ}\) (20 min of warm up time for TC inputs) For RTD inputs: \(0.1 \%\) of F.S. \(\pm 1^{\circ}\) (F.S. = Full Scale) \\
\hline
\end{tabular}

\section*{OUTPUT SPECIFICATIONS}

CONTROL 1
Contact Rating: 5A @250V AC / 30V DC, resistive SSR Drive (Voltage Pulse): 12V DC \(\pm 10 \%, \mathrm{~m} 50 \mathrm{~mA}\)

ALARM
1
Contact Rating: \(5 \mathrm{~A} @ 230 \mathrm{~V}\) AC / 30V DC, resistive SSR Drive 12V DC (50mA)

SUPPLY VOLTAGE 85 to 270 V AC/DC \((50 / 60 \mathrm{~Hz})\)
POWER 6 VA max @ 230V AC
CONSUMPTION
TEMPERATURE
Operating: 0 to \(50^{\circ} \mathrm{C}\)
Storage: -20 to \(75^{\circ} \mathrm{C}\)
HUMIDITY 95\% RH
(NON CONDENSING)
WEIGHT 50 Oz
PROTECTION LEVEL IP65 for faceplate
COMPLIANCE IEC/EN 61326 (EMI/EMC)
IEC/EN 61010 Revision 3
2010 Edition (Safety)
UL 61010 Revision 3 2010 Edition (Safety)

\section*{DIMENSIONS}

TERMINAL CONNECTIONS

INPUT RANGES (TABLE 1)
FOR RTD
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Input } & Ranges & \\
\hline \multicolumn{2}{|l|}{ Resolution } & 1 & 0.1 \\
\hline Pt100 & \({ }^{\circ} \mathrm{C}\) & -150 to 850 & -150 to 850 \\
& \({ }^{\circ} \mathrm{F}\) & -238 to 1562 & -199 to 999 \\
\hline
\end{tabular}

FOR THERMOCOUPLE
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Input } & Ranges & \\
\hline \multirow{3}{|l|}{ Resolution } & 1 & 0.1 \\
\hline \multirow{3}{*}{} & \({ }^{\circ} \mathrm{C}\) & -199 to 750 & -199 to 750 \\
\cline { 2 - 4 } & \({ }^{\circ} \mathrm{F}\) & -328 to 1382 & -199 to 999 \\
\hline \multirow{3}{*}{K} & \({ }^{\circ} \mathrm{C}\) & -199 to 1350 & -199 to 999 \\
\cline { 2 - 4 } & \({ }^{\circ} \mathrm{F}\) & -328 to 2462 & -199 to 999 \\
\hline \multirow{3}{*}{T} & \({ }^{\circ} \mathrm{C}\) & -199 to 400 & -199 to 400 \\
\cline { 2 - 4 } & \({ }^{\circ} \mathrm{F}\) & -328 to 750 & -199 to 750 \\
\hline \multirow{3}{*}{ R\&S } & \({ }^{\circ} \mathrm{C}\) & 0 to 1750 & N/A \\
\cline { 2 - 4 } & \({ }^{\circ} \mathrm{F}\) & 32 to 3182 & N/A \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|cc|c|c|}
\hline PART N0. & \multicolumn{2}{|c|}{ CONTROL OUTPUT } & AUXILARY OUTPUT & SUPPLY VOLTAGE \\
\hline ATC550S00000 & Relay & 12V DC SSR & Relay & \(85-270 \mathrm{~V}\) AC/DC \\
\hline ATC550S10000 & Relay & 12V DC SSR & 12V DC SSR & \(85-270 \mathrm{~V}\) AC/DC \\
\hline
\end{tabular}

Note: Other models, options and accessories available. Please consult factory.

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{CONTROL VOLTAGE} & DC Models (SDA) 4-32 VDC \\
\hline & AC Models (SAA) 85-240 VAC \\
\hline \multirow[t]{2}{*}{PICK UP VOLTAGE} & SDA Models, 4V Max \\
\hline & SAA Models, 85V Max. \\
\hline \multirow[t]{2}{*}{DROP OUT VOLTAGE} & SDA Models, 1V Min. \\
\hline & SAA Models, 40V Min. \\
\hline PEAK REPETITIVE OUTPUT VOLTAGE & 600 Vrms Max. \\
\hline OFF STATE LEAKAGE CURRENT & 10mArms Max. \\
\hline ON STATE VOLTAGE DROP & 1,5 Vrms Max. \\
\hline DIELECTRIC STRENGTH & 2500 Vrms, 1 Min. (Input-Output-Case) \\
\hline ISOLATION RESISTANCE & 100 M //DC 500 V (Input-Output-Case) \\
\hline RESPONSE TIME & 1/2 Cycle +1 mS Max . \\
\hline \multirow[t]{2}{*}{TEMPERATURE} & Operate \(\quad-20^{\circ}\) to \(+80^{\circ} \mathrm{C}\) \\
\hline & Storage \(\quad-30^{\circ}\) to \(+100^{\circ} \mathrm{C}\) \\
\hline AGENCY APPROVALS & SDA1 Models Only: Underwriters Lab's UR File No. E165828 \\
\hline WEIGHT & 2 oz . \\
\hline
\end{tabular}

\section*{DC and AC Inputs - Solid-State Relay}
- 15, 25, 40A @ 50-240 VAC Outputs
- 4 to 32 VDC and 85 to 240 VAC Input
- LED Operation Indicator (SD Only)
- Compatible Heat Sinks

HEAT SINK INFORMATION: To achieve the rated output current loads for all ATC solid-state relays, they must be mounted to a heat sink.

WIRING
SDA1, SAA1

\begin{tabular}{|l|c|c|c|c|c|c|}
\hline MODEL & A & B & C & D & E & F \\
\hline NO118(1)-60 & 60 & 90 & 100 & 60 & N/A & 48 \\
\hline N0118(2)-200 & 60 & 90 & 100 & 200 & 97 & N/A \\
\hline
\end{tabular}
\(\rightarrow\) DIMENSIONS (MILLIMETERS)

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODEL NUMBER & UL RECOGNIZED & \[
\begin{aligned}
& \text { INPUT } \\
& \text { VOLTAGE }
\end{aligned}
\] & OUTPUT VOLTAGE & OUTPUT AMPS & PHASE \\
\hline SDA1-215Z & Yes & 4-32 VDC & 50-240 VAC & 15 & Single \\
\hline SDA1-225Z & Yes & 4-32 VDC & 50-240 VAC & 25 & Single \\
\hline SDA1-240Z & Yes & 4-32 VDC & 50-240 VAC & 40 & Single \\
\hline SAA1-215Z & Yes & 85-240 VAC & 50-240 VAC & 15 & Single \\
\hline SAA1-225Z & No & 85-240 VAC & 50-240 VAC & 25 & Single \\
\hline SAA1-240Z & No & 85-240 VAC & 50-240 VAC & 40 & Single \\
\hline SDA3-240Z & No & 4-15 VDC & 50-240 VAC & 40 & Three \\
\hline SDA3-440Z & No & 4-15 VDC & 50-460 VAC & 40 & Three \\
\hline N0118 (1)-60 & No & \multicolumn{4}{|l|}{Heat Sink for SDA1 and SAA1 Models} \\
\hline N0118 (2)-200 & Yes & \multicolumn{4}{|l|}{Heat Sink for SDA3 Models} \\
\hline & & \multicolumn{4}{|l|}{Other Relays and Heat Sinks Available, Consult Factory.} \\
\hline
\end{tabular}

This accessory part comprises of a bracket and an integral terminal strip. The bracket facilitates surface mounting while the strip relocates all terminals where they are conveniently accessible from the front.

\section*{Surface Mounting Brackets}

FOR SERIES 353, 354, 355, 356, 365,
366, 376, 385
Order Part. No. 353-260-27-00

\section*{1/16 DIN TIMER ACCESSORIES-8 PIN ACCESSORIES}

\section*{000-825-85-00}

8 -Pin surface DIN rail socket.
Recommended for use with all 8-pin octal plug-in devices when surface mounting or DIN rail mounting.

UL \#E72711
US \& CAN.

319-261-45-00
Plug-on socket kit (8 pin). Recommended for use with all 8 -pin octal plug-in devices. Panel mounting only. Attach the wires to the solderless connector with a crimping tool.

407-025-13-00
Hold-down for 405C/409B Series and part \#000-825-85-00. Two (2) needed for proper installation.

\section*{1/16 DIN TIMER ACCESSORIES-8 PIN ACCESSORIES}

000-825-86-00
11-Pin surface DIN rail socket. Recommended for use with all 11-pin octal plug-in devices when surface mounting or DIN rail mounting.

70-463-1
11-Pin Socket, DIN/Panel Mount, with screw terminals \& Clamping plates.

314-260-07-00
Plug-on socket kit (11-pin).
Recommended for use with all 11-pin octal plug-in devices. Panel mounting only. Attach the wires to the solderless connector with a crimping tool.

405-025-07-00
Hold down for 407C Series and part \#000-825-86-00.
Two (2) needed for proper installation.

\section*{101026105}

Recommended for use with all the ATC Diversified Electronics family of "remote adjustable" timers. Proper spacing is maintained for UL and CSA applications. This linear taper potentiometer has a non-conductive shaft attached to the internal conductive plastic wafer. The brass bushing is 3/8" x 32NEF and accepts adjustment hardware 1000540070, 100054071.

\section*{100054073}

Recommended for use with any adjustment or switch having a \(1 / 4\) " shaft. This knob slips over the shaft and is secured in place by a \#6-32 set screw. The knurled, mirror finished, black thermostat knob has a white pointer line for reference.

\section*{atc DIVERSIFIED \\ ELECTRONICS}

\section*{MOTOR PROTECTION}

FEATURE MATRIX
\begin{tabular}{|c|}
\hline & \multirow[b]{3}{*}{\[
\begin{aligned}
& \tilde{o} \\
& \underset{\sim}{山} \\
& \text { 좀 }
\end{aligned}
\]} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{} & \multicolumn{10}{|c|}{\multirow[t]{2}{*}{NOMINAL LINE VOLTAGE PHASE-TO-PHASE 50/60 HZ}} & \multicolumn{4}{|c|}{ENCLOSURE} & \multicolumn{2}{|l|}{RESET} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \stackrel{\rightharpoonup}{\mathbf{0}} \\
& \stackrel{H}{3} \\
& \vdots
\end{aligned}
\]} & \multirow[b]{3}{*}{문} \\
\hline & & & & & & & & & & & & & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \infty \\
& \stackrel{\infty}{\underset{~}{心}}
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\underset{\underset{\sim}{2}}{\underset{\sim}{z}}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & & & & \\
\hline MODEL NUMBER & & & & 120 & 208 & 220 & 230 & 240 & 380 & 440 & 460 & 480 & 575 & & & & & & & & & & \\
\hline PRA-100-AFA & & & - & & - & - & - & - & - & \(\bullet\) & - & - & & - & & & & \(\bullet\) & & \(\bullet\) & & & \\
\hline PRA-100-AFN & & & - & & - & - & - & - & - & - & - & - & & & & & - & - & & \(\bullet\) & & & \\
\hline PRA-100-AFE & & & - & & - & - & - & - & - & - & - & - & & & & - & & - & & \(\bullet\) & & & \\
\hline SLA-120-AFN & - & - & - & - & & & & & & & & & & & & & - & - & & & - & & \\
\hline SLA-120-ALA & \(\bullet\) & - & - & \(\bullet\) & & & & & & & & & & \(\bullet\) & & & & \(\bullet\) & & & & & \\
\hline SLA-120-ALE & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & & & & & & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & & - & \(\bullet\) \\
\hline SLA-120-ALER & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & & & & & & & & & & & & \(\bullet\) & & & - & \(\bullet\) & & - & \(\bullet\) \\
\hline SLA-120-ASA & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & & & & & \(\bullet\) & & & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & \\
\hline SLA-120-ASB & \(\bullet\) & \(\bullet\) & - & - & & & & & & & & & & & - & & & \(\bullet\) & & \(\bullet\) & & & \\
\hline SLA-208-AFN & - & - & \(\bullet\) & & - & & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & \\
\hline SLA-220-AFN & \(\bullet\) & - & - & & & - & & & & & & & & & & & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & \\
\hline SLA-230-ALA & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & \(\bullet\) & & & & & & & \(\bullet\) & & & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & \\
\hline SLA-230-ALE & - & - & - & & - & - & - & - & & & & & & & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & & - & \(\bullet\) \\
\hline SLA-230-ALER & \(\bullet\) & \(\bullet\) & \(\bullet\) & & - & \(\bullet\) & - & \(\bullet\) & & & & & & & & \(\bullet\) & & & - & \(\bullet\) & & \(\bullet\) & \(\bullet\) \\
\hline SLA-230-ASA & \(\bullet\) & - & \(\bullet\) & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & & & & & & \(\bullet\) & & & & \(\bullet\) & & \(\bullet\) & - & & \\
\hline SLA-230-ASB & \(\bullet\) & \(\bullet\) & \(\bullet\) & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & & \(\bullet\) & & & \(\bullet\) & & \(\bullet\) & & & \\
\hline SLA-240-AFN & - & \(\bullet\) & \(\bullet\) & & & & & - & & & & & & & & & - & \(\bullet\) & & & - & & \\
\hline SLA-380-ALE & \(\bullet\) & \(\bullet\) & - & & & & & & \(\bullet\) & & & & & & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & \(\bullet\) \\
\hline SLA-380-ALER & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & \(\bullet\) & & & & & & & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & & \(\bullet\) & \(\bullet\) \\
\hline SLA-380-ASA & \(\bullet\) & - & \(\bullet\) & & & & & & \(\bullet\) & & & & & \(\bullet\) & & & & \(\bullet\) & & \(\bullet\) & & & \\
\hline SLA-440-AFE & \(\bullet\) & \(\bullet\) & - & & & & & & & \(\bullet\) & & & & & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & & - & - \\
\hline SLA-440-ALE & \(\bullet\) & - & - & & & & & & & - & - & - & & & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & & - & \(\bullet\) \\
\hline SLA-440-ALER & \(\bullet\) & - & \(\bullet\) & & & & & & & \(\bullet\) & - & \(\bullet\) & & & & \(\bullet\) & & & \(\bullet\) & - & & \(\bullet\) & \(\bullet\) \\
\hline SLA-440-ASA & \(\bullet\) & - & - & & & & & & & - & - & - & & - & & & & \(\bullet\) & & \(\bullet\) & & & \\
\hline SLA-460-AFE & \(\bullet\) & - & - & & & & & & & & \(\bullet\) & & & & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & & - & \(\bullet\) \\
\hline SLA-480-AFE & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & & & & \(\bullet\) & & & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & \(\bullet\) \\
\hline SLA-575-AFE & \(\bullet\) & - & \(\bullet\) & & & & & & & & & & \(\bullet\) & & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & \(\bullet\) \\
\hline SLA-575-ALE & \(\bullet\) & - & - & & & & & & & & & & - & & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & & - & \(\bullet\) \\
\hline SUA-120-ALA & \(\bullet\) & - & - & \(\bullet\) & & & & & & & & & & \(\bullet\) & & & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & \(\bullet\) \\
\hline SUA-120-ALAU & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & & & & & \(\bullet\) & & & & \(\bullet\) & & \(\bullet\) & & - & \(\bullet\) \\
\hline SUA-230-ALA & \(\bullet\) & - & - & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & & & & & & \(\bullet\) & & & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & \(\bullet\) \\
\hline SUA-230-ALAU & \(\bullet\) & - & - & & \(\bullet\) & \(\bullet\) & - & - & & & & & & - & & & & \(\bullet\) & & - & & - & \(\bullet\) \\
\hline SUA-380-ASA & \(\bullet\) & - & \(\bullet\) & & & & & & \(\bullet\) & & & & & \(\bullet\) & & & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & \(\bullet\) \\
\hline SUA-440-ASA & - & - & - & & & & & & & - & - & - & & - & & & & - & & - & \(\bullet\) & & \(\bullet\) \\
\hline
\end{tabular}

All models available with fixed operating voltages. Consult factory.

\section*{FEATURE MATRIX}

*The SLB Series is 60 Hz standard.

FEATURE MATRIX
\begin{tabular}{|c|}
\hline & \multirow[b]{2}{*}{\[
\begin{aligned}
& \tilde{0} \\
& \underline{\underline{3}} \\
& \text { 山ㅗㅁ }
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{PHASE UNBALANCE} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{u
岂
岂
岂
롬} & \multirow[b]{2}{*}{} & \multicolumn{10}{|c|}{NOMINAL LINE VOLTAGE PHASE－TO－PHASE 50／60 HZ} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & & & \multirow[t]{2}{*}{RESET} & \multirow[b]{2}{*}{} & & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 咠 } \\
& \stackrel{y}{3} \\
& د
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{景} \\
\hline MODEL NUMBER & & & & & & & & 꾼 & \(\stackrel{\sim}{\sim}\) & ㅊ & 욲 & 문 & ¢ & q & \％ & ¢ & \(\stackrel{\sim}{n}\) & & & & & & & & & & & & \\
\hline SLD－120－ALE & － & － & & － & & － & － & － & & & & & & & & & & & － & & & & & － & & & － & & \\
\hline SLD－120－ASA & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & － & － & & & & & & & & & & \(\bullet\) & & & & & & － & & & & & \\
\hline SLD－230－ALE & \(\bullet\) & － & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & － & － & － & \(\bullet\) & & & & & & & － & & & & & － & & & － & & \\
\hline SLD－230－ASA & － & － & & － & & － & － & & － & － & － & － & & & & & & － & & & & & & － & & & & & \\
\hline SLD－380－ALE & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & & & & & － & & & & & & － & & & & & \(\bullet\) & & & － & & \\
\hline SLD－380－ASA & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & & & & & \(\bullet\) & & & & & \(\bullet\) & & & & & & － & & & & & \\
\hline SLD－440－ALE & \(\bullet\) & － & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & & & & & & \(\bullet\) & － & \(\bullet\) & & & \(\bullet\) & & & & & \(\bullet\) & & & \(\bullet\) & & \\
\hline SLD－440－ASA & \(\bullet\) & － & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & & & & & － & & & & & \\
\hline SLE－120－ALE & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & & & － & & & & & & & & & & & \(\bullet\) & & & & & \(\bullet\) & & & \(\bullet\) & & \\
\hline SLE－230－ALE & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & & & & － & \(\bullet\) & － & \(\bullet\) & & & & & & & \(\bullet\) & & & & & \(\bullet\) & & & \(\bullet\) & & \\
\hline SLE－380－ALE & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & & & & & & & & － & & & & & & \(\bullet\) & & & & & － & & & \(\bullet\) & & \\
\hline SLE－440－ALE & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & & & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & & & & － & & & \(\bullet\) & & \\
\hline SLH－120－ALE & \(\bullet\) & \(\bullet\) & & & & \(\bullet\) & & \(\bullet\) & & & & & & & & & & & \(\bullet\) & & & & & \(\bullet\) & & & \(\bullet\) & & \\
\hline SLH－230－ALE & \(\bullet\) & \(\bullet\) & & & & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & & \(\bullet\) & & & & & － & & & \(\bullet\) & & \\
\hline SLH－440－ALE & \(\bullet\) & \(\bullet\) & & & & \(\bullet\) & & & & & & & & \(\bullet\) & － & － & & & － & & & & & \(\bigcirc\) & & & \(\bullet\) & & \\
\hline SU－120－ALE & \(\bullet\) & － & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & & & & & & \(\bullet\) & & & & & \(\bullet\) & & & & & \\
\hline SU－230－ALE & \(\bullet\) & \(\bullet\) & & & & \(\bullet\) & \(\bullet\) & & － & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & & \(\bullet\) & & & & & － & & & & & \\
\hline SU－380－ALE & \(\bullet\) & \(\bullet\) & & & & \(\bullet\) & \(\bullet\) & & & & & & \(\bullet\) & & & & & & \(\bullet\) & & & & & \(\bullet\) & & & & & \\
\hline SU－440－ALE & \(\bullet\) & \(\bullet\) & & & & \(\bullet\) & \(\bullet\) & & & & & & & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & － & & & & & & & & & & \\
\hline SLM－120－ASE & \(\bullet\) & \(\bullet\) & \(\bullet\) & － & \(\bullet\) & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & & & & & & \(\bullet\) & & & & & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & \\
\hline SLM－230－ASE & \(\bullet\) & \(\bullet\) & \(\bullet\) & － & － & － & \(\bullet\) & & － & \(\bullet\) & － & \(\bullet\) & & & & & & & \(\bullet\) & & & & & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & \\
\hline SLM－380－ASE & \(\bullet\) & － & \(\bullet\) & － & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & & & － & & & & & & \(\bullet\) & & & & & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & \\
\hline SLM－440－ASE & \(\bullet\) & － & － & － & － & － & \(\bullet\) & & & & & & & \(\bullet\) & － & \(\bullet\) & & & － & & & & － & \(\bigcirc\) & & & － & － & \\
\hline SLM－575－ASE & \(\bullet\) & － & － & \(\bullet\) & － & \(\bullet\) & － & & & & & & & & & & － & & － & & & & － & \(\bigcirc\) & & & \(\bullet\) & － & \\
\hline SLU－0200 & \(\bullet\) & － & － & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & － & － & \(\bullet\) & － & － & － & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & & & & & \(\bullet\) & & & \(\bullet\) & & \\
\hline SLU－0201 & \(\bullet\) & \(\bullet\) & \(\bullet\) & － & & \(\bullet\) & \(\bullet\) & & \(\bullet\) & \(\bullet\) & \(\bullet\) & － & \(\bullet\) & \(\bullet\) & － & \(\bullet\) & & \(\bullet\) & & & & & & \(\bullet\) & & & \(\bullet\) & & \\
\hline SLU－100－ASA & \(\bullet\) & － & － & － & \(\bullet\) & － & \(\bullet\) & & － & － & － & － & － & － & － & \(\bullet\) & & － & & & & & － & － & & & \(\bullet\) & & \\
\hline SLU－100－ASD & \(\bullet\) & － & \(\bullet\) & － & \(\bullet\) & － & \(\bullet\) & & － & \(\bullet\) & － & － & － & － & \(\bullet\) & \(\bullet\) & & & & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & & & \(\bullet\) & & \\
\hline SLU－600－ASTDS & \(\bullet\) & & \(\bullet\) & & & & \(\bullet\) & & － & － & & & \(\bullet\) & & \\
\hline DPR350B & \(\bullet\) & － & \(\bullet\) & － & \(\bullet\) & － & \(\bullet\) & & & & & & － & \(\bullet\) & \(\bullet\) & \(\bullet\) & & & & \(\bullet\) & & & － & \(\bullet\) & & － & & & \\
\hline DPR175A & \(\bullet\) & － & \(\bullet\) & & & － & \(\bullet\) & & & & \(\bullet\) & & & & & & & & & － & & & & \(\bullet\) & & & \(\bullet\) & & \\
\hline
\end{tabular}

FEATURE MATRIX

Adjustments: F = Fixed, K = Knob, L = Locknut

\section*{Multifunction Meter}

\section*{DISPLAY SPECIFICATION}
\begin{tabular}{ll}
Display & 4 rows, LCD with backlight \\
Digits & 4 (Lowest 8 digits for energy display) \\
Bargraph & For Current representation
\end{tabular}

INPUT SPECIFICATIONS
\begin{tabular}{|c|c|}
\hline Electrical Connection & \(3 \emptyset-3\) wire, \(3 \emptyset-4\) wire, \(2 \emptyset-3\) wire, 1ø-2 wire \\
\hline Input Voltage Range & 11 to 300V AC, (Phase to Neutral) 19 to 519V AC (Phase to Phase) \\
\hline Input Current Range & Nominal 5A AC (Min-11mA, Max-6A) \\
\hline Frequency & 45 to 65 Hz \\
\hline Display Scrolling & Automatic / Manual (Programmable) \\
\hline Power Consumption & 8VA Max \\
\hline Display Reset & Programmable (For energy) \\
\hline Resolution & \begin{tabular}{l}
For energy : \\
\(0.01 \mathrm{k}, 0.1 \mathrm{k}, 1 \mathrm{k}, 0.01 \mathrm{~m}, 0.1 \mathrm{~m}, 1 \mathrm{~m}\) (depending upon CT ratio \(\times\) PT ratio) \\
For Power, Voltage, \\
Current : Auto resolution \\
For Power factor: 0.001
\end{tabular} \\
\hline Accuracy & \begin{tabular}{l}
Voltage (L-N / L-L) : \(\pm 0.5 \%\) of F.S. \\
Power Factor \(\pm 0.01\) Current \(\pm 0.5 \%\) F.S. \\
Frequency : \(\pm 0.1 \%\) For L-N Voltage \(>20 \mathrm{~V}\) \\
For L-L Voltage >35V \\
Power (Active, Reactive, Apparent) : 1\% \\
Energy (Active, Reactive, Apparent) : Class 1
\end{tabular} \\
\hline Memory Retention & 10 years (For energy) \\
\hline Measuring Parameters & \begin{tabular}{l}
Voltage (L-L / L-N) (Individual / Average), Current (I1, I2, I3) (Individual / Average), Frequency, Power Factor (Individual /Total), Active, Reactive \& Apparent power (Individual / Total), \\
Active, Reactive \& Apparent Energy (Total), Demand (Min / Max Active Power, Min/Max Reactive Power, \\
Max Apparent Power), \%THD up to 31st Level Max Demand Current, \\
Neutral Current, Phase Sequence Detection
\end{tabular} \\
\hline
\end{tabular}

\section*{FEATURES}
- \(3 \emptyset\) True RMS (Voltage, Current)
- \(3 \emptyset\) Power (Active, Reactive, Apparent), Energy (Active, Reactive, Apparent)
- Programmable CT/PT Primary/Secondary
- CT Polarity Error Detection
- Variable Pulse width Selection
- Single Phase Network with Phase Selection
- Modbus RTU Communication (RS485)
- Neutral Current Measurement
- THD up to 31st Level.
- Single Pulse Output / Demand Phase Sequence Detection

\section*{OUTPUT SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline Pulse Output & Voltage Range : External 24V DC max Current Capacity: 100mA max Pulse Width : \(100 \mathrm{~ms} \pm 5 \mathrm{~ms}\) \\
\hline Communication Interface and Protocol & RS485 and MODBUS RTU \\
\hline \begin{tabular}{l}
Communication \\
Address
\end{tabular} & 1 to 255 \\
\hline \begin{tabular}{l}
Transmission \\
Mode
\end{tabular} & Half duplex \\
\hline Transmission Distance & 500 meter maximum \\
\hline Transmission Speed & \[
\begin{aligned}
& 300,600,1200,2400,4800, \\
& 9600,19200 \text { (in bps) }
\end{aligned}
\] \\
\hline Parity & None, Odd, Even \\
\hline Stop Bits & 1 or 2 \\
\hline Response Time & 100 ms (max and independent of baud rate) \\
\hline
\end{tabular}

\section*{AUXILIARY SUPPLY SPECIFICATIONS}

Supply Voltage 100 to 240 V AC, \(-15 \%+12 \%, 50 / 60 \mathrm{~Hz}\), (\(\pm 5 \%\))

\section*{SETTABLE PARAMETERS}
\begin{tabular}{ll}
CT Primary & \(1 / 5 \mathrm{~A}\) to 10 kA (Programmable for any value) \\
CT Secondary & \(1 / 5 \mathrm{~A}\) (Programmable) \\
PT Primary & 100 V to 500 kV (Programmable for any value) \\
PT Secondary & 100 V to 500 V (Programmable for any value)
\end{tabular}

\section*{DIMENSIONS}

ENVIRONMENTAL SPECIFICATIONS
Temperature
Operating Temperature : -10 to \(55^{\circ} \mathrm{C}\) Storage Temperature : -20 to \(75^{\circ} \mathrm{C}\)
Humidity
(non-condensing) Up to \(85 \% \mathrm{RH}\)
MECHANICAL SPECIFICATIONS
\begin{tabular}{ll}
Mounting & Panel mount \\
Weight & 318 gms
\end{tabular}

\section*{TERMINAL CONNECTIONS}

Cable Size (\(\mathrm{mm}^{2}\)): 0.5 to 2.5 ; Tightening Torque (\(\mathrm{N}-\mathrm{m}\)): 0.68 to 0.79

\section*{COMPLIANCE}

Applicable EMI / EMC Standards
Product Standard : IEC 61326-1
\begin{tabular}{l|l|l}
\hline Category & & Standards Compliance \\
\hline ESD Immunity & IEC 61000-4-2 & \begin{tabular}{l}
Level IV (Air discharge : 15kV), \\
(Contact Discharge : -8kV
\end{tabular} \\
\hline Surge Immunity & IEC 61000-4-5 & \begin{tabular}{l}
\(+/-2 \mathrm{kV}\) common mode, (Line to ground) \\
\(+/-1 \mathrm{kV}\) differential mode, (Line to Line)
\end{tabular} \\
\hline Radiated Susceptibility & IEC 61000-4-3 & \begin{tabular}{l}
Level III, 80 to 1000MHz (10V/m) \\
Level II, 1.4GHz to 2GHz (3V/m) \\
Level I, 2GHz to 2.7GHz (1V/m)
\end{tabular} \\
\hline Conducted Susceptibility & IEC 61000-4-6 & Level II (3V/m) \\
\hline Voltage Dips and & IEC 61000-4-11 & \begin{tabular}{l}
Dips : 0\% residual voltage / \\
Interruptions cycle (Criteria B), 40\% residual voltage / \\
\end{tabular} \\
& & 10 cycles 50Hz / 12 cycles 60Hz (Criteria C) \\
\(70 \%\) residual voltage / 25 cycles \\
\(50 \mathrm{~Hz} / 30\) cycles 60Hz (Criteria C)
\end{tabular}

\section*{ORDERING INFORMATION}

Part Number: VCFP96M

LISTED
E55826

Phase Monitor

Timing Diagram

ORDERING INFORMATION
\begin{tabular}{l|l}
\hline PART NUMBER & SUPPLY VOLTAGE \\
\hline DPR175A & \(3 \emptyset / 3 W, 170\) TO 290V AC, P-P
\end{tabular}
- 3-Phase - 3 Wire Input
- Monitors, Phase Sequence, Under Voltage, Over Voltage
- Trip delay (T) -0.2 to 10 Sec
- LED Indication: Relay ON, Power ON
- Slim, Space Saving Design
- DIN Rail Mount

\section*{SPECIFICATIONS}
\begin{tabular}{ll}
\begin{tabular}{l}
ACCURACY \\
(TRIP VOLTAGE)
\end{tabular} & \(\pm 0.5 \%\) of F.S. (F.S. \(=\) Full Scale) \\
\hline RESET & Auto reset on removal of fault condition \\
\hline OUTPUT CONTACT & SPDT (1 C/0) \\
\hline CONTACT RATING & N/0:5A@250V AC \\
& N/C:3A@250V AC \\
\hline
\end{tabular}

PHASE SEQUENCE, Yes
\begin{tabular}{ll}
\hline UNDER VOLTAGE & 170 to 224 V AC \\
\hline OVER VOLTAGE & 236 to 290 V AC \\
\hline TRIP DELAY (T) & 0.2 to 10 Sec \\
\hline
\end{tabular}

POWER ON DELAY 400 msec
\begin{tabular}{ll}
\hline ACCURACY & \(\pm 5 \%\) of F.S. (F.S. \(=\) Full Scale) \\
(TRIP TIME)
\end{tabular}

NOMINAL INPUT 230V AC VOLTAGE
\begin{tabular}{ll}
\begin{tabular}{l}
POWER \\
CONSUMPTION
\end{tabular} & 8VA max \\
\hline \begin{tabular}{l}
OPERATING \\
VOLTAGE
\end{tabular} & 170 to 290 V AC \\
\hline TEMPERATURE & Operating: \\
\cline { 2 - 3 } & 0 to \(50^{\circ} \mathrm{C}\left(32\right.\) to \(\left.122^{\circ} \mathrm{F}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline HUMIDITY & Up to \(95 \%\) RH \\
\hline WEIGHT & 62 g \\
\hline PROTECTION & IP50 for faceplate \\
LEVEL & IP40 for housing \\
& IP20 for terminals
\end{tabular}

LED INDICATION CHART
\begin{tabular}{|l|c|c|}
\hline SUPPLY & RELAY LED & POWER LED \\
\hline Nominal condition & ON & ON \\
\hline Phase reversed & OFF & ON \\
\hline UV / OV & OFF & ON \\
\hline
\end{tabular}
- Under voltage, over voltage, under frequency, over frequency, asymmetry, phase failure and phase sequence monitoring in \(3 \emptyset\) system
- RMS measurement
- Power ON delay, Trip time delay and Delay on release

\section*{SPECIFICATIONS}
\begin{tabular}{ll}
ENVIRONMENTAL SPECIFICATION \\
\hline DISPLAY & \begin{tabular}{l}
Liquid Crystal Display \\
3 Digits
\end{tabular} \\
& \\
INPUT SPECIFICATIONS
\end{tabular}
\begin{tabular}{ll}
\multicolumn{2}{l}{ TRIP SETTINGS } \\
\hline UNDER VOLTAGE & 280 to \(600 \mathrm{~V} \mathrm{AC} \mathrm{(L-L)} \mathrm{[for} \mathrm{3} \mathrm{\emptyset-3} \mathrm{wire]}\) \\
& 160 to 300 V AC (L-N) [for \(3 \emptyset-4\) wire] \\
\hline OVER VOLTAGE & 280 to \(600 \mathrm{~V} \mathrm{AC} \mathrm{(L-L)} \mathrm{[for} \mathrm{3} \mathrm{\emptyset-3} \mathrm{wire]}\) \\
& 160 to 300 V AC (L-N) [for 3Ø-4 wire] \\
\hline UNDER FREQUENCY & \(45-65 \mathrm{~Hz}\) \\
\hline OVER FREQUENCY & \(45-65 \mathrm{~Hz}\) \\
\hline PHASE FAILURE & Yes \\
\hline PHASE SEQUENCE & Yes \\
\hline PHASE ASYMMETRY & \(5.0-99.9 \%\)
\end{tabular}
* For \(3 \emptyset-3 \mathrm{~W}\), at least 2 phase must be present
* For \(3 \varnothing-4 \mathrm{~W}\), at least 1 phase must be present

\section*{Voltage Phase Monitor}

TRIP TIME SETTINGS
\begin{tabular}{ll}
\hline POWER ON DELAY & \(2-99.9 \mathrm{Sec}\) \\
\hline TRIP TIME DELAY & \(0-99.9 \mathrm{Sec}\) \\
\hline DELAY ON RELEASE & \(0-99.9 \mathrm{Sec}\) \\
\hline RESPONSE TIME & \(<200 \mathrm{~ms}\)
\end{tabular}

HYSTERESIS
\begin{tabular}{ll}
\hline VOLTAGE & \(1.0-99.9 \mathrm{~V}\) \\
\hline FREQUENCEY & \(0.2-2 \mathrm{~Hz}\) \\
\hline ASYMMETRY & \(2-20 \%\)
\end{tabular}

RESOLUTION
\begin{tabular}{ll}
\hline VOLTAGE & 1 V \\
\hline FREQUENCY & 0.1 Hz
\end{tabular}

ACCURACY
\begin{tabular}{ll}
\hline VOLTAGE & \(\pm 1 \%\) \\
\hline FREQUENCY & \(\pm 0.3 \mathrm{~Hz}\) \\
\hline TIME (Recovery Time, & \(\pm 5 \%\) of setting +200 ms \\
Trip Delay, \\
Power ON Delay) & \\
\end{tabular}

\section*{OUTPUT SPECIFICATIONS}
\begin{tabular}{ll}
\hline NO. OF RELAYS & 2 \\
\hline TYPE OF OUTPUT & \(45-65 \mathrm{~Hz}\) \\
(Relay 1) & SPDT \\
(Relay 2) & SPDT \\
\hline RELAY RATING & N/0: 5A @ 250V AC \\
& N/C: 3A @ 250V AC
\end{tabular}

LED INDICATION
\begin{tabular}{ll}
\hline LED 1 (Green) & Power ON \\
LED 2 (Red) & Relay 1 (Continuously ON after trip) \\
LED 3 (Red) & Relay 2 (Continuously ON after trip) \\
\hline
\end{tabular}

ENVIRONMENTAL SPECIFICATION
\begin{tabular}{ll}
\hline AMBIENT TEMP. & \begin{tabular}{l}
Operating Temp: \(0^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\) \\
Storage Temp: \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline HUMIDITY & \(95 \%\) RH \\
(Non-condensingn) & \\
\hline POLLUTION DEGREE & IP50 Faceplate \\
& IP30 Housing \\
& IP20 Terminals
\end{tabular}

\section*{DIMENSIONS}

\section*{TERMINAL CONNECTIONS}

\section*{ORDERING INFORMATION}
\begin{tabular}{l|l}
\hline PART NUMBER & OPERATING RANGE \\
\hline DPR350C & \(300-600 \mathrm{~V}\) AC
\end{tabular}

SLU-0200 Phase Monitor Relays (3-Phase Monitors) provide cost-effective protection against premature equipment failure caused by voltage faults on 3-Phase systems (Wye or Delta). The SLU-0200 Series multi-mode phase monitoring relay, was designed for the convenience of electrician's, maintenance managers and engineers. This device can be easily adjusted for the voltage, imbalance percentage and time delay requirements to protect against unbalanced voltages or single phasing regardless of any regenerative voltages.
Both DELTA and WYE systems may be monitored. In Wye systems, connections to neutral are NOT required. The SLU-0200 Series is UL Listed under UL File Number E55826.
NOTE: Can be used for most generator applications. Not recommended for variable frequency drive applications. Call technical support for application assistance.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
AUTO \\
RANGING \\
SCALES
\end{tabular}} & Frequency & Nominal Line-to-Line Voltages & Adjustable Range \\
\hline & 60 Hz & 208, 220, 240, 380, & 200-250 \\
\hline & & 415, 440, 460, 480 & 360-500 \\
\hline & 50Hz & 208, 220, 240 & 200-250 \\
\hline & & 346, 380, 415 & 330-430 \\
\hline \multirow[t]{2}{*}{VOLTAGE BAND} & Drop-out & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\pm 10 \%\) of Range Setting (Under/Over) \(\pm 7 \%\) of Range Setting (Under/Over)}} \\
\hline & Pick-up & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{MAXIMUM
VOLTAGE}} \\
\hline & & & \\
\hline PHASE & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{ABC (Will Not Operate On CBA Sequence)}} \\
\hline SEQUENCE & & & \\
\hline POWER REQUIRED & \multicolumn{3}{|l|}{90VA Max.} \\
\hline \multirow[t]{2}{*}{PHASE UNBALANCE} & \multicolumn{3}{|l|}{2\% to 10\%, Adjustable Drop-out} \\
\hline & \multicolumn{3}{|l|}{Hysteresis 10\% of Setting} \\
\hline PHASE SHIFT & \multicolumn{3}{|l|}{\(13^{\circ}\) Drop-out, \(12^{\circ}\) Pick-up (\(\varnothing\)-Loss)} \\
\hline FREQUENCY & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Not Detected}} \\
\hline SHIFT & & & \\
\hline RAPID CYCLE & \multicolumn{3}{|l|}{5 Cycle Lockout, 30 minute cycle count reset} \\
\hline RESET & \multicolumn{3}{|l|}{Automatic} \\
\hline RELAY OUTPUT & \multicolumn{3}{|l|}{SPDT, 10A @ 240VAC Resistive, 1/2 HP @240VAC} \\
\hline \multirow[t]{3}{*}{INDICATORS} & \multicolumn{2}{|r|}{Flashing} & Continuous \\
\hline & Normal (Green LED) & Fault Delay Active & Relay Energized \\
\hline & \begin{tabular}{l}
Fault \\
(Red IED)
\end{tabular} & Restart Delay Active & Relay \\
\hline \multirow[t]{4}{*}{RESPONSE} & Power Up & \multicolumn{2}{|l|}{2.5 SEC Minimum} \\
\hline & \multicolumn{3}{|l|}{Fault Delay 1 to 25 SEC., Adjustable} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{ll}
\hline Severe Fault & 1 SEC. (Phase-Loss, Unbalance or \\
& Phase Reversal)
\end{tabular}} \\
\hline & Restart & \multicolumn{2}{|l|}{0.5 to 300 S , Adjustable (Auto Reset)} \\
\hline \multirow[t]{2}{*}{TEMPERATURE RATINGS} & Operate & \multicolumn{2}{|l|}{\(32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\)} \\
\hline & Storage & \multicolumn{2}{|l|}{\(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)} \\
\hline REPEAT ACCURACY & \multicolumn{3}{|l|}{1\% @ Fixed Condition} \\
\hline ENCLOSURE & Style "A" & \multicolumn{2}{|l|}{8-Pin Plug In LEXAN® Dust Cover} \\
\hline WEIGHT & 0.35 to 0.5 & & \\
\hline
\end{tabular}

\section*{DIMENSIONS (INCHES)}

ORDERING INFORMATION
\begin{tabular}{|l|l|}
\hline MODEL NUMBER & DESCRIPTION \\
\hline SLU0200 & Voltage/Phase Monitor \\
\hline
\end{tabular}

LISTED
IND．CONT．EQ 496Y

Universal Phase Monitor w／Rapid Cycle Lockout \＆Diagnostic LED

\section*{TOP LABEL}

DIMENSIONS（INCHES）
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{\[
T_{3.00^{\circ}}
\]} & \multicolumn{2}{|l|}{LED STATUS} & CONDITION \\
\hline & \multirow[t]{2}{*}{GRN} & & NORMAL－RELAY ON \\
\hline & & ノூூ & FAULT DELAY：OV／UV \\
\hline & \multirow[t]{2}{*}{RED} & 」 & UNBALANCE \\
\hline & & ノルム & UNDER／OVER VOLT \\
\hline & \multirow{3}{*}{YEL} & & REVERSAL \\
\hline & & ภกпกา & RESTART DELAY \\
\hline － \(2.38^{\circ}-1\) & & ภூ几 & ØB LOSS \\
\hline \multirow[t]{3}{*}{} & GRN & 0 & \multirow[t]{3}{*}{ØA LOSS or ØC LOSS or 3－ø POWER OFF} \\
\hline & RED & 0 & \\
\hline & YEL & 0 & \\
\hline \multirow[t]{2}{*}{\[
\angle A \emptyset B \varnothing C
\]} & RED & － & （5）FAULT LOCKOUT： \\
\hline & YEL & & MANUAL RESET REQ． \\
\hline
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|l|l|}
\hline MODEL NUMBER & DESCRIPTION \\
\hline SLU0201 & Voltage／Phase Monitor \\
\hline
\end{tabular}

SLU－0201 Phase Monitor Relays（3－Phase Monitors）provide cost－effective protection against premature equipment failure caused by voltage faults on 3－Phase systems（Wye or Delta）．The SLU－0201 Series multi－mode phase monitoring relay，was designed for the convenience of electrician＇s， maintenance managers and engineers．This device can be easily adjusted for the voltage，imbalance percentage and time delay requirements to protect against unbalanced voltages or single phasing regardless of any regenerative voltages．
Both DELTA and WYE systems may be monitored．In Wye systems， connections to neutral are NOT required．The SLU－0201 Series is UL Listed under UL File Number E55826．
NOTE：Can be used for most generator applications．Not recommended for variable frequency drive applications．Call technical support for application assistance．

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|c|c|}
\hline AUTO RANGING & Frequency & Nominal Line－to－Line Voltages & \begin{tabular}{l}
Adjustable \\
Range
\end{tabular} \\
\hline SCALES & 60 Hz & 208，220，240，380， & 200－250 \\
\hline & & 415，440，460， 480 & 360－500 \\
\hline & 50Hz & 208，220， 240 & 200－250 \\
\hline & & 346，380， 415 & 330－430 \\
\hline VOLTAGE BAND & Drop－out & \(\pm 10 \%\) of Range S & （Under／Over） \\
\hline & Pick－up & \(\pm 7 \%\) of Range Sett & （Under／Over） \\
\hline MAXIMUM & 550 VAC（Lin & ne－to－Line） & \\
\hline VOLTAGE & & & \\
\hline PHASE & ABC（Will Not & t Operate On CBA Sequ & \\
\hline SEQUENCE & & & \\
\hline POWER REQUIRED & 90VA Max． & & \\
\hline PHASE & 2\％to 10\％， & Adjustable Drop－out & \\
\hline UNBALANCE & Hysteresis & 10\％of Setting & \\
\hline PHASE SHIFT & \(13^{\circ}\) Drop－out & t， \(12^{\circ}\) Pick－up（ \(\varnothing\)－Loss） & \\
\hline FREQUENCY SHIFT & Not Detected & & \\
\hline RAPID CYCLE & 5 Cycle Lock & out， 30 minute cycle co & t reset \\
\hline RESET & Automatic & & \\
\hline RELAY OUTPUT & SPDT，10A＠ & 240VAC Resistive，1／2 & P＠240VAC \\
\hline INDICATOR LEDS & For Complete & Fault Codes，See Tabl & \\
\hline & Green & Flashing or On Solid & Relay Energized \\
\hline & Bi－Color & & \\
\hline & Red／Yel & Flashing or On Solid & Relay De－Energized \\
\hline RESPONSE & Power Up & 2．5 SEC Minimum & \\
\hline & Fault Delay & 1 to 25 SEC．，Adjus & \\
\hline & Severe Fault & \begin{tabular}{l}
1 SEC．（Phase－Loss， \\
Phase Reversal）
\end{tabular} & nbalance or \\
\hline & Restart & 0.5 to 300 S ，Adjus & （Auto Reset） \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(131{ }^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{t}\right.\) & －55 \({ }^{\circ} \mathrm{C}\) ） \\
\hline RATINGS & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}(-45\) & （ \(+85^{\circ} \mathrm{C}\) ） \\
\hline REPEAT ACCURACY & 1\％＠Fixed & Condition & \\
\hline ENCLOSURE & Style＂A＂ & 8－Pin Plug In LEXAN & Dust Cover \\
\hline WEIGHT & 0.35 to 0.5 & lbs ． & \\
\hline
\end{tabular}

Phase Monitor Relays (3-Phase Monitors) provide cost-effective protection against premature equipment failure caused by voltage faults on 3-Phase systems (Wye or Delta). The SLU Series multi-mode phase monitoring relay, was designed for the convenience of electrician's, maintenance managers and engineers. A single SLU Phase Monitoring Relay can be easily adjusted for the voltage, imbalance percentage and time delay requirements to protect against unbalanced voltages or single phasing regardless of any regenerative voltages.
Both DELTA and WYE systems may be monitored. In Wye systems, connections to neutral are NOT required. The SLU-100 Series is UL Listed under UL File Number E55826.
NOTE: Not recommended for generator or variable frequency drive applications. Call technical support for application assistance.

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
AUTO \\
RANGING
\end{tabular} & Frequency & Nominal Line-to-Line Voltages & Adjustable Range \\
\hline \multirow[t]{4}{*}{SCALES} & \multirow[t]{2}{*}{60 Hz} & 208, 220, 240, 380, & 200-250 \\
\hline & & 415, 440, 460, 480 & 360-500 \\
\hline & \multirow[t]{2}{*}{50 Hz} & 208, 220, 240 & 200-250 \\
\hline & & 346, 380, 415 & 330-430 \\
\hline \multirow[t]{2}{*}{VOLTAGE BAND} & Drop-out & \multicolumn{2}{|l|}{\(\pm 10 \%\) of Range Setting (Under/Over)} \\
\hline & Pick-up & \multicolumn{2}{|l|}{\(\pm 7 \%\) of Range Setting (Under/Over)} \\
\hline MAXIMUM VOLTAGE & \multicolumn{3}{|l|}{550 VAC (Line-to-Line)} \\
\hline
\end{tabular}

Universal Phase Monitor

ORDERING INFORMATION
\begin{tabular}{|l|l|}
\hline MODEL NUMBER & DESCRIPTION \\
\hline SLU-100-ASA & Universal Phase Monitor \\
\hline SLU-100-ASD & Din Rail Mount Universal Phase Monitor \\
\hline
\end{tabular}

\section*{TOP LABELS}

Plug-In

\section*{DIMENSIONS (INCHES)}

\section*{WEIGHT}

IND. CONT. EQ 496Y

Universal Phase Monitor
- Monitors up to 700 VAC
- DIN Rail or Surface Mount
- Operating Range 200-630 VAC
- Manual or Automatic Reset
- Adjustable Restart Delay
- Adjustable Fault Delay

PROTECTS AGAINST:
- Rapid Cycling
- Phase Loss
- Phase Reversal
- Phase Unbalance
- Phase Shift
- Over/Under Voltage
- Over/Under Frequency

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|}
\hline MODEL NUMBER & DESCRIPTION \\
\hline SLU-600-ASTDS & Universal Phase Monitor/Relay \\
\hline
\end{tabular}

The ATC-Diversified Electronics SLU-600-ASTDS Universal Phase Monitor protects 3-phase motors up to 700VAC. The RAPID CYCLING feature prevents motors cycling due to load-induced line fault conditions. Powered by 120VAC, this reliable motor protection relay is unaffected by transients and disturbances from the monitored power source. The SLU-600 Series is UL Listed under UL File Number E55826.

\section*{SPECIFICATIONS}
\begin{tabular}{llll}
\begin{tabular}{lll}
AUTO \\
RANGING \\
SCALES
\end{tabular} & Frequency & \begin{tabular}{l}
Nominal Line-to- \\
Line Voltages
\end{tabular} & \begin{tabular}{l}
Adjustable \\
Range
\end{tabular} \\
\cline { 2 - 4 } & 60 Hz & \(208,220,240\) & \(200-250\) \\
& & \(380,415,440\), & \(360-500\) \\
& & \(460,480,575,600\) & \(550-630\) \\
\hline
\end{tabular}
\begin{tabular}{lll}
\(3 \emptyset\) VOLTAGE & Drop-out & \(\pm 10 \%\) of Range Setting (Under/Over) \\
\cline { 2 - 3 } \begin{tabular}{l}
BAND
\end{tabular} & Pick-up & \(\pm 7 \%\) of Range Setting (Under/Over) \\
\hline CONTROL VOLTAGE & 120 VAC \(\pm 10 \%, 50 / 60 \mathrm{~Hz}\) \\
\hline \begin{tabular}{l}
MAXIMUM \\
VOLTAGE
\end{tabular} & 700 VAC (Line-to-Line) \\
\hline PHASE & \\
\begin{tabular}{l}
SEQUENCE
\end{tabular} & ABC (Will Not Operate On CBA Sequence)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline POWER REQUIRED & \multicolumn{3}{|l|}{90VA Max.} \\
\hline PHASE & \multicolumn{3}{|l|}{2\% to \(10 \%\), Adjustable Drop-out} \\
\hline UNBALANCE & Hysteresis & \multicolumn{2}{|l|}{10\% of Setting} \\
\hline PHASE SHIFT & \multicolumn{3}{|l|}{\(13^{\circ}\) Drop-out, \(12^{\circ}\) Pick-up (\(\emptyset\)-Loss)} \\
\hline FREQUENCY & \multicolumn{3}{|l|}{\(50 / 60 \mathrm{~Hz}\)} \\
\hline \multirow[t]{2}{*}{SHIFT} & \multicolumn{3}{|l|}{Drop-out \(\pm 4 \%\)} \\
\hline & \multicolumn{3}{|l|}{Pick up \(\pm 3 \%\)} \\
\hline RAPID CYCLING & \multicolumn{3}{|l|}{5 Cycle Lockout, 30-Min. Cycle Count Reset} \\
\hline RESET & \multicolumn{3}{|l|}{Automatic or Manual Mode Clears Rapid Cycle Count} \\
\hline RELAY OUTPUT & \multicolumn{3}{|l|}{DPDT, 10A @ 240 VAC Resistive} \\
\hline \multirow[t]{5}{*}{LED'S} & & Flashing & Continuous \\
\hline & \multirow[t]{2}{*}{Normal (Green LED) Fault (Red LED)} & \begin{tabular}{l}
Fault Delay \\
Active
\end{tabular} & Relay Energized \\
\hline & & Restart Delay Active & \begin{tabular}{l}
Relay \\
De-energized
\end{tabular} \\
\hline & Over (Red LED) & Restart Delay Active & \begin{tabular}{l}
Relay \\
De-energized
\end{tabular} \\
\hline & Unbal / \(\emptyset\) Loss (Red LED) & Restart Delay Active & \begin{tabular}{l}
Relay \\
De-energized
\end{tabular} \\
\hline \multirow[t]{4}{*}{RESPONSE} & \multicolumn{3}{|l|}{Power Up 2.5 S Minimum} \\
\hline & \multicolumn{3}{|l|}{Fault Delay 0.1 to 25 S , Adjustable} \\
\hline & Severe Fault & \multicolumn{2}{|l|}{100 mS (\(\emptyset\)-Loss, Unbalance or \(\emptyset\) Reversal)} \\
\hline & Restart & \multicolumn{2}{|l|}{0.5 to 300 S , Adjustable (Auto Reset)} \\
\hline \multirow[t]{2}{*}{TEMPERATURE RATINGS} & Operate & \multicolumn{2}{|l|}{\(32^{\circ}\) to \(131{ }^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\)} \\
\hline & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\) & \(5^{\circ}\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
REPEAT ACCURACY & \(1 \%\) @ Fixed Condition \\
\hline TERMINALS & \begin{tabular}{l}
Plug and Socket Term Block with Spring Pressure Wire \\
Retention, 12 AWG Max.
\end{tabular} \\
\hline ENCLOSURE & 35 mm DIN Rail or Surface Mount, Polycarbonate Housing \\
\hline WEIGHT & 1.10 lbs.
\end{tabular}

TOP LABEL

\section*{LED STATUS CHART}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& =0 F F \\
& =0 N \\
\text { O- } & =\text { FLASHING }
\end{aligned}
\] & Normal Green LED & Under Red LED & Over Red LED & Unbal \& \(\emptyset\) Loss Red LED \\
\hline Powering Up/First 3 Sec & \(\bigcirc\) & - & - & -'\%-' \\
\hline Powered Up/Normal Voltages & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Relay ON/Under Voltage Detected/FAULT DELAY active & -- & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Relay ON/Over Voltage Detected/ FAULT DELAY active & -' & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Relay ON/Unbal or \(\emptyset\) Loss Detected/FAULT DELAY active & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Relay OFF/Under Voltage Failure & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Relay OFF/Over Voltage Failure & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Relay OFF/Unbal or \(\emptyset\) Loss Failure & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline Relay OFF/Under Voltage Corrected/RESTART DELAY active & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) \\
\hline Relay OFF/Over Voltage Corrected/RESTART DELAY active & \(\bigcirc\) & \(\bigcirc\) & -'9:- & \(\bigcirc\) \\
\hline Relay OFF/Unbal or Ø Loss Corrected/RESTART DELAY active & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & -' \\
\hline
\end{tabular}

STYLE "A"

STYLE "N"

\section*{Phase Sequence Monitor}

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline OPERATING VOLTAGE & \[
\begin{aligned}
& 208-480 \text { VAC } \pm 15 \%, \\
& \text { phase-to-phase, } 50 / 60
\end{aligned}
\] \\
\hline PHASE SEQUENCE & ABC (Will Not Operate CBA) \\
\hline TOTAL APPARENT POWER & 11 VA @ 480 VAC \\
\hline \multirow[t]{2}{*}{OUTPUT RATING} & \(\begin{array}{ll}\text { Style A \& N } & \text { SPDT, } 10 \text { Amps @ } 240 \text { VAC } \\ & \text { Resistive, } 1 / 2 \text { hp @ } 240 \text { VAC }\end{array}\) \\
\hline & \begin{tabular}{ll}
Style E & DPDT, 10 Amps @ 240 VAC \\
& Resistive, \(1 / 2 \mathrm{hp} @ 240\) VA
\end{tabular} \\
\hline RESET & Automatic \\
\hline \multirow[t]{2}{*}{INDICATORS} & Green LED Glows on correct sequence \\
\hline & Red LED Glows on incorrect sequence \\
\hline
\end{tabular}
RESPONSE TIMES 200 mSEC . (approximately)
TEMPERATURE Operate \(\quad 32^{\circ}\) to \(+131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\)
RATING Storage \(\quad-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
\begin{tabular}{lll}
ENCLOSURE & Style "A" \(\quad\) LEXAN® dust cover 8-Pin plug-in. \\
& & RB-08 or \(0 \mathrm{OT}-08\) socket required
\end{tabular}

Style "N" Glass filled VALOX® surface mounted 6-1/4" male quick connect
Style "E" LEXAN® Surface Mount, \#8-32 screws
\begin{tabular}{lll}
WEIGHT & Style "A" & 0.3 lbs. \\
\cline { 2 - 3 } & Style "N" & 0.35 lbs. \\
\hline Style "E" & 0.75 lbs
\end{tabular}

\section*{MODEL NUMBER}
\begin{tabular}{|c|c|c|}
\hline MODEL NUMBER & PRA 100 & \\
\hline \multicolumn{2}{|l|}{ENCLOSURES LEXAN® dust cover 8-Pin plug-in. RB-08 or 0T-08 Socket} & AFA \\
\hline Glass filled VALOX® surfa mounted 6-1/4" male quick connect & & AFN \\
\hline LEXAN® Surface Mount, \#8-32 screws & & AFE \\
\hline
\end{tabular}

\section*{WIRING}

The PRA-100 Series Phase Sequence Monitors are designed to allow the output to energize only when the phase connections are in the proper sequence. For use in applications where motor direction is critical or the installation is required by code to have sequence detection.

When the phase sequence is correct and the operating voltage is present on all phases, the relay will energize and the green LED indicator will glow. If the phases are in reverse rotation, the relay will not energize and the red LED indicator will glow. The PRA-100 Series will not detect phase loss while the motor is turning. The PRA Series is UL Listed under UL File Number E55826.

\section*{DIMENSIONS (INCHES/MLLLIMETERS)}

\section*{STYLE "A"}

The ATC Diversified SLA Series is designed to protect 3-phase equipment against PHASE LOSS, UNDER VOLTAGE, and PHASE REVERSAL conditions.
With normal operating voltages applied in the proper ABC sequence, the internal relay will energize (PICK-UP). When incorrect phase sequence or phase loss occurs or the three-phase voltages fall below the drop out voltages, the relay will de-energize (DROP-OUT). On models featuring indicators, the LED glows when all line conditions are normal.
Both Delta and Wye systems may be monitored. In Wye systems, connections to neutral are NOT required.

For UL Listed units, with field wiring terminals, copper wire with \(60^{\circ} / 75^{\circ} \mathrm{C}\) rating must be used for control circuitry connections.
NOTE: When a phase is lost while the motor is running, a condition known as regeneration occurs where a voltage is induced into the open phase nearly equal in magnitude to the normal phase-to-phase voltage. However, with the exception of lightly loaded motors, enough change is detected by the SLA to provide the required protection when properly adjusted. The SLA Series is UL Listed under file Number E55826.

\section*{SPECIFICATIONS}
\begin{tabular}{lll}
DROP OUT & \(1 \emptyset\) Low & \(83 \%\) of Nominal \\
VOLTAGE & \(3 \emptyset\) Low & \(90 \%\) of Nominal
\end{tabular}

RESPONSE TIMES Models Up to 300 VAC
STYLE "A" \& "E" Operate 250 mSEC
Models Over 300 VAC
\begin{tabular}{lll}
& Operate & 1.0 SEC \\
& Release & 2.0 SEC \\
\hline RESPONSE TIMES & Operate & 60 mSEC \\
STYLE "N" & Release & 0.5 SEC \\
\hline POWER & Style "A" & 3 VA (approximately) \\
REQUIRED & Style "E" & Models up to \(300 \mathrm{VAC}: 3 \mathrm{VA}\) (max.) \\
& & Models over 300 VAC: 7 VA (max.) \\
& & Models up to 500 VAC: 3 VA (max.) \\
& Style "N" & 3 VA (max.) \\
\hline
\end{tabular}
OPERATING See Ordering Information

VOLTAGE
\begin{tabular}{|c|c|}
\hline RESET & Automatic (Manual Optional) \\
\hline INDICATOR LED & Glows when all conditions are Normal (On Applicable Models) \\
\hline OUTPUT RATING & SPDT (Style "A" and "N") DPDT (Style "E") \\
\hline PHASE SEQUENCE & ABC (Will not Operate CBA) \\
\hline TEMPERATURE & Operate \(\quad 32\) to \(+131 \mathrm{~F}(0\) to \(+55 \mathrm{C})\) \\
\hline RATING & Storage \(\quad-49\) to \(185 \mathrm{~F}(-45\) to \(+85 \mathrm{C})\) \\
\hline U.S. PATENT & 3,611,050 \\
\hline NUMBER & \\
\hline WEIGHT & \begin{tabular}{ll}
Style "A" & NET:2.24 oz Shipping: 2.56 oz \\
Style "N" & NET:4.8 oz Shipping: 5.76 oz. \\
Style "E" & NET:5.3 oz Shipping: 5.6 oz
\end{tabular} \\
\hline
\end{tabular}

Style "E"
Style "N"
- Available up to 480 VAC
(625 VAC with "E" style)
- Delta or Wye Systems
- Fixed, Lock Shaft, or Screwdriver Adjustments

Phase Monitors
PROTECTS 3-PHASE EQUIPMENT AGAINST:
- Phase Loss
- Under Voltage
- Phase Reversal
- Several Enclosure Styles

TYPICAL APPLICATIONS
- Air Handlers
- Computer Power Protection
- Conveyor Drive
- Water Waste \& Sewage Machinery
- Oil \& Gas Pumps
- Sawmill \& Woodpump Machinery
- Power Substation
- Automatic Transfer Switching for Monitoring Emergency Power Supplies
- Irrigation Pumps
- Lift Station Pumps
- Robotics Equipment
- Elevator Drives
- Commercial/Industrial Air Conditioning \& Refrigeration Compressors
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{STYLE A PLUG-IN} \\
\hline \multirow[t]{2}{*}{MODEL NUMBER} & \multirow[t]{2}{*}{OPERATING VOLTAGE} & \multirow[t]{2}{*}{TYPE OF ADJUSTMENT} & \multicolumn{2}{|l|}{DROP-OUT VOLTAGE} & \multirow[t]{2}{*}{AGENCY APPROVAL} & \multirow[b]{2}{*}{OUTPUT RATINGS} \\
\hline & & & 1 Ø LOW & 3 Ø LOW & & \\
\hline SLA-120-ALA & \multirow{3}{*}{95-130 Adj} & Lock Shaft & \multirow{3}{*}{79-108} & \multirow{3}{*}{85-117} & - & DPDT, 345 VA Inductive; 10 Amps Resistive @ 240 VAC. Figure 2 \\
\hline SLA-120-ASA & & \multirow[t]{2}{*}{Screwdriver} & & & \({ }_{c} \mathrm{ND}_{\text {us }}\) (1) & SPDT, 345 VA Inductive; 10 Amps Resistive @ 240 VAC, Figure 1 \\
\hline SLA-120-ASB & & & & & - & SPDT, 345 VA Inductive; 10 Amps Resistive @ 240 VAC, Figure 3 \\
\hline SLA-230-ALA & \multirow{3}{*}{190-270 Adj.} & Lock Shaft & \multirow{3}{*}{158-224} & \multirow{3}{*}{171-243} & \({ }_{c}{ }^{\text {d }}\) & DPDT, 345 VA Inductive; 10 Amps Resistive @ 240 VAC, Figure 2 \\
\hline SLA-230-ASA & & \multirow{4}{*}{Screwdriver} & & & \({ }_{c} \mathrm{~N}_{\text {us }}\) (\({ }^{\text {a }}\) & SPDT, 345 VA Inductive; 10 Amps Resistive @ 240 VAC, Figure 1 \\
\hline SLA-230-ASB & & & & & - & SPDT, 345 VA Inductive; 10 Amps Resistive @ 240 VAC, Figure 3 \\
\hline SLA-380-ASA & 350-440 Adj. & & 290-365 & 315-396 & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{SPDT, 360 VA Inductive; 10 Amps Resistive @ 240 VAC, Figure 1} \\
\hline SLA-440-ASA & 430-480 Adj. & & 357-398 & 387-432 & & \\
\hline SUA-120-ALA & \multirow[b]{2}{*}{95-130 Adj.} & \multirow{4}{*}{Lock Shaft} & \multirow{2}{*}{79-108} & \multirow{2}{*}{85-117} & \({ }_{\text {chen us }}\) (1) & \multirow{4}{*}{SPDT, 345 VA Inductive; 10 Amps Resistive @ 240 VAC, Figure 1} \\
\hline SUA-120-ALAU* & & & & & \[
c^{-9} \mathrm{~N}_{\text {Us }} \text { (1) }
\] & \\
\hline SUA-230-ALA & \multirow[t]{2}{*}{190-270 Adj.} & & \multirow[t]{2}{*}{158-224} & \multirow[t]{2}{*}{171-243} & chñus (1) & \\
\hline SUA-230-ALAU* & & & & & & \\
\hline SUA-380-ASA & 350-440 Adj. & \multirow[t]{2}{*}{Screwdriver} & 290-365 & 315-396 & \multirow[t]{2}{*}{\[
{ }_{c} \mathrm{~N}_{\text {us }} \sqrt{(1)}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
SPDT, 10 Amps \\
Resistive @ 240 VAC, Figure 1
\end{tabular}} \\
\hline SUA-440-ASA & 430-480 Adj. & & 357-398 & 387-432 & & \\
\hline \multicolumn{7}{|l|}{*UL Listed only when used with RB-08 relay socket; 5 Amps Resistive @ 240 VAC. All voltages referenced on this page are phase-to-phase. Models also available with fixed operating voltages. Consult factory.} \\
\hline
\end{tabular}

STYLE E SURFACE MOUNTED ENCLOSURE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MODEL & \multirow[t]{2}{*}{OPERATING VOLTAGE} & \multicolumn{2}{|l|}{DROP-OUT VOLTAGE} & \multirow[b]{2}{*}{RESET} & \multirow[t]{2}{*}{AGENCY ARPPROVAL} & \multirow[b]{2}{*}{OUTPUT RATINGS} \\
\hline NUMBER & & 1 ØLOW & 3 Ø LOW & & & \\
\hline SLA-120-ALE & \multirow[b]{2}{*}{95-130 Adj.} & \multirow[t]{2}{*}{79-108} & \multirow[t]{2}{*}{85-117} & Automatic & & DPDT, 211 VA Inductive; 10 Amps Resistive @ 120 VAC. Figure 4 \\
\hline SLA-120-ALER & & & & Manual & & DPDT, 211 VA Inductive; 10 Amps Resistive @ 120 VAC. Figure 4 \\
\hline SLA-230-ALE & \multirow[b]{2}{*}{190-270 Adj.} & \multirow[t]{2}{*}{158-224} & \multirow[t]{2}{*}{171-243} & Automatic & & DPDT, 345 VA Inductive; 5 Amps Resistive @ 240 VAC. Figure 4 \\
\hline SLA-230-ALER & & & & Manual & \[
c^{\circ(4)}
\] & DPDT, 345 VA Inductive; 5 Amps Resistive @ 240 VAC. Figure 4 \\
\hline SLA-380-ALE & \multirow[t]{2}{*}{350-440 Adj.} & \multirow[t]{2}{*}{290-365} & \multirow[t]{2}{*}{315-396} & Automatic & \[
c^{\circ O R}
\] & DPDT, 360 VA Inductive; 3 Amps Resistive @ 600 VAC. Figure 4 \\
\hline SLA-380-ALER & & & & Manual & & SPDT, 360 VA Inductive; 3 Amps Resistive @ 600 VAC. Figure 5 \\
\hline SLA-440-ALE & \multirow[t]{2}{*}{430-480 Adj.} & \multirow[t]{2}{*}{357-398} & \multirow[t]{2}{*}{387-432} & Automatic & C(4Q)US (IA & DPDT, 360 VA Inductive; 3 Amps Resistive @ 600 VAC. Figure 4 \\
\hline SLA-440-ALER & & & & Manual & \[
{ }^{\text {Cing }}
\] & SPDT, 360 VA Inductive; 3 Amps Resistive @ 600 VAC. Figure 5 \\
\hline SLA-575-ALE & 525-625 Adj. & 436-519 & 473-563 & Automatic & \[
\underbrace{4}_{\text {Custe }}
\] & DPDT, 360 VA Inductive; 3 Amps Resistive @ 600 VAC. Figure 4 \\
\hline \multicolumn{7}{|l|}{All voltage referenced are phase-to-phase.-Models also available with fixed operating voltages. Consult factory.} \\
\hline \multicolumn{7}{|c|}{STYLE N EPOXY ENCAPSULATED} \\
\hline \multirow[t]{2}{*}{MODEL NUMBER} & \multicolumn{2}{|c|}{OPERATING} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TYPE OF OPERATION}} & \multirow[t]{3}{*}{\begin{tabular}{|c|}
\multicolumn{2}{|c|}{ DROP-OUT } \\
\hline \(1 \emptyset\) LOW \\
\hline 100
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l|l}
AGENCY \\
& Ø LOW \\
APPROVAL
\end{tabular}} \\
\hline & \multicolumn{2}{|c|}{VOLTAGE} & & & & \\
\hline SLA-120-AFN & & & Fixed & & & 108 \\
\hline SLA-208-AFN & & & Fixed & & 173 & \multirow[t]{2}{*}{\[
c^{*} I_{u s}^{\oplus}
\]} \\
\hline SLA-220-AFN & & & Fixed & & 183 & \\
\hline SLA-240-AFN & & & Fixed & & 199 & 216 \\
\hline \multicolumn{7}{|l|}{SPDT 180VA @ 120VAC; 72VA @ 24VAC; All voltage referenced are phase-to-phase. SPDT 180 va @ 120 vac, 72 va @ 24 vac.} \\
\hline
\end{tabular}

\section*{3-Phase Voltage Band Monitor}

DIMENSIONS (INCHES)

\section*{WIRING}

The PBC Series offers protection to three-phase equipment that is required to operate between two voltage limits. All three phases are monitored individually for a pre-selected UNDER and OVER VOLTAGE limit.

\section*{OPERATION}

With normal operating voltages applied, the internal relay will energize (PICK-UP). When the voltages on any or all phases fall outside the preset Over/Under trip points for longer than the Release delay, the relay will de-energize (DROP-OUT). When line conditions return to normal, the PBC Series Monitor automatically resets and the internal relay energizes.
The LED fault indicators aid in set up and system trouble-shooting glowing on fault condition. The LED indicators have an immediate response to voltage conditions and operate independently of the relay.

The HYSTERESIS in each unit provides a differential of \(4 \%\) between the PICK-UP and DROP-OUT trip points.
The PBC Series is UL Listed under UL File Number E55826.

\section*{SPECIFICATIONS}

OUTPUT RATING DPDT, 10Amps @ 240 VAC, Resistive; 360 VA @ 600 VAC, Inductive; \(1 / 2 \mathrm{hp}\)
\begin{tabular}{lll}
\hline POWER REQUIRED & \multicolumn{2}{l}{ Models Up to 300 VAC } \\
\cline { 2 - 3 } & Models Over 300 VAC & 6 VA, Max Max \\
\hline RESET & Automatic \\
\hline HYSTERESIS & \(4 \%\) \\
\hline REPEAT ACCURACY & \(0.1 \%\) @ Fixed Condition \\
\hline INDICATORS LED & Glows On Fault; (1) For Over, (1) For Under \\
\hline RESPONSE TIMES & Operate & 100 mSEC \\
\cline { 2 - 3 } & Release & 0.5 SEC \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(+131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline WEIGHT & 20 oz. &
\end{tabular}

DELTA CONNECTED
\begin{tabular}{|l|l|ll|}
\hline MODEL & MAXIMUM & \multicolumn{2}{|c|}{ ADJUSTABLE RANGES } \\
NUMBER & VOLTAGE & UNDER & OVER \\
\hline PBC-120-ALE & 155 VAC & \(90-120\) & \(120-150\) \\
\hline PBC-230-ALE & 275 VAC & \(185-240\) & \(208-265\) \\
\hline PBC-400-ALE & 485 VAC & \(325-385\) & \(415-475\) \\
\hline PBC-440-ALE & 550 VAC & \(390-480\) & \(440-540\) \\
\hline PBC-480-ALE & 570 VAC & \(400-490\) & \(460-560\) \\
\hline PBC-575-ALE & 700 VAC & \(500-610\) & \(540-690\) \\
\hline
\end{tabular}

All voltages referenced on this page are phase-to-phase, unless otherwise indicated.

WYE CONNECTED
\begin{tabular}{|l|l|ll|}
\hline \begin{tabular}{l}
MODEL
\end{tabular} & \multicolumn{2}{|c|}{ MAXIMUM } & \multicolumn{2}{|c|}{ ADJUSTABLE RANGES } \\
NUMBER & VOLTAGE & (Phases to Neutral) \\
UNDER & OVER \\
\hline PBC-120/208-ALE & 268 VAC & \(90-120\) & \(120-150\) \\
\hline PBC-220/380-ALE & 450 VAC & \(185-220\) & \(220-255\) \\
\hline PBC-277/480-ALE & 565 VAC & \(235-277\) & \(277-320\) \\
\hline
\end{tabular}

All voltages referenced on this page are phase-to-phase, unless otherwise indicated.

The PBD Series offers protection to three-phase sequence sensitive equipment that is required to operate between two voltage limits. All three phases are monitored individually for a pre-selected UNDER and OVER VOLTAGE limit, with adjustable release delay.

\section*{OPERATION}

With normal operating voltages applied in the proper ABC sequence, the internal relay will energize (PICK-UP). When the voltages on any or all phases fall outside the preset Over/Under trip points for longer than the Adjustable Release delay, the relay will de-energize (DROPOUT). When line conditions return to normal, the PBD Series Monitor automatically resets and the internal relay energizes.

Both Delta and Wye systems may be monitored. In Wye systems, connections to neutral are not required.
The LED fault indicators aid in set up and system troubleshooting, and glow on fault condition. The LED indicators have an immediate response to voltage conditions and operate independently of the relay. In a phase reversal condition the LED responds to voltage conditions but the relay will NOT energize.
The Adjustable Release Delay is provided to ignore momentary voltage fluctuations that cause nuisance tripping.

The HYSTERESIS in each unit provides a differential of \(4 \%\) between the PICK-UP and DROP-OUT trip points.
The PBD Series is UL Listed under UL File Number E55826.

\section*{SPECIFICATIONS}

OUTPUT RATING DPDT, 10Amps @ 240 VAC, Resistive; 360 VA @ 600 VAC, Inductive; \(1 / 2 \mathrm{hp}\)
\begin{tabular}{lll}
\hline POWER REQUIRED & \multicolumn{2}{l}{ Models Up to 300 VAC } \\
\cline { 2 - 3 } & Models Over 300 VAC & 6 VA, Max \\
\hline RESET & Automatic \\
\hline PHASE SEQUENCE & ABC (Will Not Operate CBA) \\
\hline HYSTERESIS & \(4 \%\) \\
\hline REPEAT ACCURACY & \(0.1 \%\) @ Fixed Condition \\
\hline INDICATORS LED & Glows On Fault; (1) For Over, (1) For Under \\
\hline RESPONSE TIMES & Operate & 100 mSEC \\
\hline & Release & 0.1 to 30 SEC, Adjustable \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(+104^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+40^{\circ} \mathrm{C}\right)\) \\
\cline { 2 - 3 } RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline WEIGHT & 19 oz. &
\end{tabular}
\begin{tabular}{|l|l|cc}
\hline MODEL & MAXIMUM & \multicolumn{2}{|c}{ ADJUSTABLE RANGES } \\
NUMBER & VOLTAGE & UNDER & OVER \\
\hline PBD-120-ALE & 155 VAC & \(90-120\) & \(120-150\) \\
\hline PBD-230-ALE & 275 VAC & \(185-240\) & \(208-265\) \\
\hline PBD-400-ALE & 485 VAC & \(325-385\) & \(415-475\) \\
\hline PBD-440-ALE & 550 VAC & \(390-480\) & \(440-540\) \\
\hline PBD-480-ALE & 570 VAC & \(400-490\) & \(460-560\) \\
PBD-575-ALE & 700 VAC & \(500-610\) & \(540-690\)
\end{tabular}

All voltages referenced on this page are phase-to-phase.

3 Phase Sequence E Voltage Band Monitor/Relays

\section*{DIMENSIONS (INCHES)}

\section*{WIRING}

\section*{True RMS Voltage Band Monitor \\ DIMENSIONS (IICHES)}

\section*{PHASE VOLTAGE MONITORS}

In today's industrial environment, Line Noise and Power Line Harmonics are becoming an increasing problem. TRUE-RMS detection may be necessary for achieving accurate Line Voltage measurement.

\section*{OPERATION}

With normal operating voltages applied in the proper ABC sequence, the internal relay will energize (PICK-UP). When the voltages on any or all phases fall outside the preset Over/Under trip points for longer than the Drop-Out Time delay, the relay will de-energize (DROP-OUT). When line conditions return to normal, the PBE Series Monitor automatically resets and the internal relay energizes.

The PBE Series is UL Listed under UL File Number E55826.

\section*{SPECIFICATIONS}

OUTPUT RATING DPDT, 10 Amps Resistive, 1/4 HP 278VA @ 240 VAC
\begin{tabular}{ll}
\hline RESET & Automatic \\
\hline PHASE SEQUENCE & ABC (Will Not Operate CBA) \\
\hline HYSTERESIS & \(2 \%\)
\end{tabular}

REPEAT ACCURACY 0.1\% @ Fixed Condition
INDICATORS LED Glows On Fault; (1) For Over, (1) For Under, (1) For Sequence
\begin{tabular}{lll}
\hline RESPONSE TIMES & Operate & 200 mSEC (approx.) \\
\cline { 2 - 3 } & Release & 0.2 to 30 SEC, Adjustable \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(+104^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+40^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Style "E" LEXAN® Surface Mount \\
\hline WEIGHT & 14 oz.
\end{tabular}

DELTA CONNECTED
\begin{tabular}{|l|l|ll|}
\hline MODEL & MAXIMUM & \multicolumn{2}{|c|}{ ADJUSTABLE RANGES } \\
NUMBER & VOLTAGE & UNDER & OVER \\
\hline PBE-120-ASE & 155 VAC & \(90-120\) & \(120-150\) \\
\hline PBE-230-ASE & 275 VAC & \(185-240\) & \(208-265\) \\
\hline PBE-400-ASE & 485 VAC & \(325-385\) & \(415-475\) \\
\hline PBE-440-ASE & 550 VAC & \(390-480\) & \(440-540\) \\
\hline PBE-480-ASE & 570 VAC & \(400-490\) & \(460-560\) \\
\hline PBE-575-ASE & 700 VAC & \(500-610\) & \(540-690\) \\
\hline
\end{tabular}

All voltages referenced on this page are phase-to-phase, unless otherwise indicated.

\section*{WYE CONNECTED}
\begin{tabular}{|l|l|ll|}
\hline \begin{tabular}{l}
MODEL \\
NUMBER
\end{tabular} & \begin{tabular}{l}
MAXIMUM \\
VOLTAGE
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{l}
ADJUSTABLE RANGES \\
(Phase to Neutral) \\
UNDER
\end{tabular}} \\
\hline OVER
\end{tabular}

All voltages referenced on this page are phase-to-phase, unless otherwise indicated.

The SLB Series is designed to protect three-phase equipment against PHASE UNBALANCE, PHASE LOSS, and PHASE REVERSAL conditions.

\section*{OPERATION}

With normal operating voltages in the proper ABC sequence and the 120 VAC control voltage applied, the internal relay will energize (PICK-UP). When any combination of Phase Unbalance exceeding the preset value or Phase Loss or Phase Reversal occurs for longer than the preset drop out time, the output relay will de-energize (DROP-OUT). If the control voltage is removed, the relay will de-energize.

The wide input voltage range permits use on any one of several standard line voltages without recalibrating. The unbalance detection level is adjustable from \(2 \%\) to \(15 \%\).
Both Delta and Wye systems may be monitored. In Wye systems, connections to neutral are not required.

Phase Unbalance Monitor

\section*{DIMENSIONS (INCHES)}

\section*{WIRING}

\section*{Phase Unbalance \(\mathcal{E}\) Loss Monitor}

The SLC Series is designed to protect 3-phase equipment against Phase UNBALANCE and PHASE LOSS conditions.

\section*{OPERATION}

With normal operating voltages applied to all three phases, the internal relay will remain de-energized (DROPPED-OUT).
When a Phase Loss or Phase Unbalance exceeding the pre-selected trip point occurs, the relay will energize (PICK-UP). The SLC series is typically used in conjunction with a SHUNT TRIP BREAKER.
Both Delta and Wye systems may be monitored. In Wye systems, connections to neutral are not required.

NOTE: When a phase is lost while the motor is running, a condition known as regeneration occurs where a voltage is induced into the open phase nearly equal in magnitude to the normal phase-to-phase voltage. The SLC series is designed to detect this condition when properly adjusted.

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline OPERATING VOLTAGE & See Table Below \\
\hline TRANSIENT PROTECTION & 1000 Volts For 8 mSEC \\
\hline RESET & Automatic \\
\hline PHASE UNBALANCE RANGE & 2\% to 10\%, Adjustable \\
\hline INDICATORS LED & Glows On Fault Condition \\
\hline RESPONSE TIMES & Operate 0.08 SEC \\
\hline & Release 0.7 SEC \\
\hline TEMPERATURE & Operate \(\quad 32^{\circ}\) to \(+131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage \(\quad-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline U.S. PATENT NUMBER & 4,331,995 \\
\hline WEIGHT & 12.5 oz. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
MODEL \\
NUMBER
\end{tabular} & \begin{tabular}{l}
OPERATING \\
VOLTAGE
\end{tabular} & \begin{tabular}{l}
POWER \\
REQUIRED
\end{tabular} & \begin{tabular}{l}
OUTPUT \\
RATING
\end{tabular} \\
\hline SLC-120-ALE & 120 VA & \begin{tabular}{l}
3 VA \\
Max.
\end{tabular} & \begin{tabular}{l}
DPDT, 5 Amps, \\
Resistive; \\
\(345 ~ V A, ~ I n d u c t i v e ~\) \\
@
\end{tabular} \\
\hline SLC-230-ALE & \(208 / 240\) VAC & & \begin{tabular}{l}
(VAC
\end{tabular} \\
\hline SLC-380-ALE & 380 VAC & \begin{tabular}{l}
7 VA \\
Max.
\end{tabular} & \begin{tabular}{l}
DPDT, 3 Amps, \\
Resistive; \\
\(360 ~ V A, ~ I n d u c t i v e ~\)
\end{tabular} \\
& & & \begin{tabular}{l}
@ 60 VAC
\end{tabular} \\
\hline
\end{tabular}

All voltages referenced on this page are phase-to-phase.

The SLD Series is designed to protect 3-phase equipment against PHASE UNBALANCE, PHASE LOSS, UNDER VOLTAGE and PHASE REVERSAL conditions.

\section*{OPERATION}

With normal operating voltage present on all three phases in the proper phase sequence, the internal relay will energize (PICK-UP). When an incorrect phase sequence or phase loss occurs or the three-phase line voltages fall outside the preset unbalance or under voltage settings, the internal relay will de-energize (DROP-OUT). When all conditions return to normal, the relay will reset.

The Adjustable Release Delay is provided to ignore momentary voltage fluctuations that cause nuisance tripping.

Both Delta and Wye systems may be monitored. In Wye Systems, connections to neutral are not required.

NOTE: When a phase is lost while the motor is running, a condition known as regeneration occurs where a voltage is induced into the open phase nearly equal in magnitude to the normal phase-to-phase voltage. The SLD series is designed to detect this condition when properly adjusted.

The SLD Series is UL Listed under UL File Number E55826.

\section*{SPECIFICATIONS}
\begin{tabular}{ll}
\begin{tabular}{l}
OPERATING \\
VOLTAGE
\end{tabular} & See Table Below \\
\hline TRANSIENT & 1000 Volts For 8 mSEC \\
PROTECTION & \\
\hline RESET & Automatic \\
\hline PHASE SEQUENCE & ABC (will not operate CBA) \\
\hline PHASE UNBALANCE & \(2 \%\) to \(10 \%\), Adjustable \\
RANGE & \\
\hline
\end{tabular}
INDICATORS LED Glows When All Conditions Are Normal
\begin{tabular}{lll}
\hline RESPONSE TIMES & Operate & 30 mSEC \\
\cline { 2 - 3 } & Release & 0.1 to 20 SEC, Adjustable (on
\end{tabular} Under Voltage only); 100 mSEC on Phase Reversal and Unbalance
\begin{tabular}{lll}
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(+131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\cline { 2 - 3 } RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline U.S. PATENT & \(4,331,995\) & \\
\hline NUMBER & & \\
\hline WEIGHT & 13.5 oz.
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MODEL NUMBER & OPERATING VOLTAGE & UNDER VOLTAGE DROPOUT RANGE & POWER REQUIRED & HYSTERESIS & OUTPUT RATING & ENCLOSURE \\
\hline SLD-120-ASA & 120 VAC & 95-115 Adj. & \multirow{6}{*}{3 VA Max.} & 2.5 VAC & \multirow[t]{4}{*}{SPDT, 10 Amp, Resistive @ 240 VAC 1/2 HP @ 240 VAC} & \multirow[t]{4}{*}{A} \\
\hline SLD-230-ASA & 208/240 VAC & 185-230 Adj. & & 5.0 VAC & & \\
\hline SLD-380-ASA & 380 VAC & 315-390 Adj. & & 10 VAC & & \\
\hline SLD-440-ASA & 440/480 VAC & 370-460 Adj. & & & & \\
\hline SLD-120-ALE & 120 VAC & 95-115 Adj. & & 5 VAC & DPDT, 5 Amps, Resistive; 345 VA , & E \\
\hline SLD-230-ALE & 208/240 VAC & 185-230 Adj. & & & Inductive @ 240 VAC & \\
\hline SLD-380-ALE & 380 VAC & 315-390 Adj. & 7 VA Max & 10 VAC & DPDT, 3 Amps, Resistive; 360 VA, & \\
\hline SLD-440-ALE & 440/480 VAC & 370-460 Adj. & & & Inductive @ 600 VAC & \\
\hline
\end{tabular}

All voltage referenced are phase-to-phase.

\section*{Phase Monitor}
- Models Available up to 480 VAC
PROTECTS 3-PHASE EQUIPMENT AGAINST:
- Phase Loss
- Under Voltage
- Phase Unbalance

\section*{DIMENSIONS}
(INCHES)

The SLE Series is designed to protect 3-phase equipment against PHASE UNBALANCE, PHASE LOSS, and UNDER VOLTAGE.

\section*{OPERATION}

With normal operating voltage present on all three phases, the internal relay will energize (PICK-UP). When a phase loss occurs or the voltages fall outside the preset unbalance or under voltage settings, the internal relay will de-energize (DROP-OUT). The relay automatically resets when the line conditions return to normal.

Both Delta and Wye systems may be monitored. In Wye Systems, connections to neutral are not required.
NOTE: When a phase is lost while the motor is running, a condition known as regeneration occurs where a voltage is induced into the open phase nearly equal in magnitude to the normal phase-to-phase voltage. The SLE series is designed to detect this condition when properly adjusted.
The SLE Series is UL Listed under UL File Number E55826

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline OPERATING VOLTAGE & See Table Below \\
\hline TRANSIENT PROTECTION & 1000 Volts For 8 mSEC \\
\hline RESET & Automatic \\
\hline PHASE UNBALANCE RANGE & \(2 \%\) to 10\%, Adjustable \\
\hline INDICATORS LED & Glows When All Conditions Are Normal \\
\hline RESPONSE TIMES & Operate 60 Milliseconds \\
\hline MODELS UP TO 300 VAC & Release 0.5 Seconds \\
\hline RESPONSE TIMES & Operate 1 Second \\
\hline MODELS OVER 300 VAC & Release 2 Seconds \\
\hline TEMPERATURE & Operate \(\quad 32^{\circ}\) to \(+131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage \(\quad-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline U.S. PATENT NO. & 4,331,995 \\
\hline WEIGHT & 12.5 to 13 oz . \\
\hline
\end{tabular}

\section*{WIRING}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l}
MODEL \\
NUMBER
\end{tabular} & \begin{tabular}{c}
OPERATING \\
VOLTAGE
\end{tabular} & \begin{tabular}{c}
UNDER VOLTAGE \\
DROPOUT RANGE
\end{tabular} & \begin{tabular}{c}
POWER \\
REQUIRED
\end{tabular} & HYSTERESIS & OUTPUT RATING \\
\hline SLE-120-ALE & 120 VAC & \(95-115\) Adj. & 3 VA Max. & 5.0 VAC & \begin{tabular}{c}
DPDT, 5 Amps, Resistive; 345 VA, \\
Inductive @ 240 VAC
\end{tabular} \\
\hline SLE-230-ALE & \(208 / 240\) VAC & \(185-230\) Adj. & & 7 VA Max. & 10 VAC \\
\hline SLE-380-ALE & 380 VAC & \(315-390\) Adj. & \begin{tabular}{c}
DPDT, 3 Amps, Resistive; 360 VA, \\
Inductive @ 600 VAC
\end{tabular} \\
\hline SLE-440-ALE & \(440 / 480\) VAC & \(370-460\) Adj. & & &
\end{tabular}

All voltage referenced are phase-to-phase.

The SLH Series is designed to protect equipment against PHASE LOSS (single phasing), UNDER VOLTAGE (brown outs), and PHASE
REVERSAL (improper sequence).

\section*{OPERATION}

When correct phase sequence and line voltage are present, the internal relay of the SLH will energize (PICK UP). When there is a phase loss, under voltage or phase reversal condition, the internal relay will deenergize (DROP-OUT). When conditions return to normal, the SLH will automatically reset.

The SLH is unique in that it has a field-adjustable hysteresis. The voltage setting is adjusted to the desired pick-up point indicated by the dial setting. Then, the hysteresis adjustment is set to the desired percentage to achieve the preferred drop-out point. When models up to 300 VAC are set at \(0 \%\), they will pick-up and drop-out at the same point, when set at \(10 \%\), the drop-out will be an average of the phase-to-phase voltages \(10 \%\) below the dial setting pick-up point. Models over 300 VAC are adjustable from \(0 \%\) to \(15 \%\).
The SLH is available in the standard voltage ranges (see table below). It has an LED indicator that glows when all conditions are normal. The SLH Series is UL Listed under UL File Number E55826.

\section*{SPECIFICATIONS}
\begin{tabular}{lll}
\begin{tabular}{l}
OPERATING \\
VOLTAGE
\end{tabular} & See Table Below \\
\hline \begin{tabular}{lll}
POWER \\
REQUIRED
\end{tabular} & See Table Below \\
\hline RESET & Automatic & \\
\hline PHASE SEQUENCE & ABC (Will Not Operate CBA) \\
\hline HYSTERESIS & Models Up to & Adjustable, 0\% to 10\% \\
& 300 VAC & Below Pick-up \\
\cline { 2 - 3 } & Models Over & Adjustable, 0\% to 15\% \\
& 300 VAC & Below Pick-up \\
\hline OUTPUT RATING & Models Up to & DPDT, 10 Amps @ 120 VAC, \\
& 300 VAC & Resistive; 211 VA @ \\
& & 120 VAC, Inductive \\
\cline { 2 - 3 } & Models Over & DPDT, 5 Amps @ 240 VAC, \\
& 300 VAC & Resistive; 345 VA \\
& & @ 240 VAC, Inductive \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline TERMINATIONS & (12) \#8-32 Screw Terminals \\
\hline INDICATORS LED & \multicolumn{2}{l}{ Glows when all conditions are normal } \\
\hline RESPONSE TIMES & See table below \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(+131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\cline { 2 - 3 } RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline WEIGHT & 14 oz. &
\end{tabular}

\section*{Phase, Under Voltage Monitor with Adjustable Hysteresis}

\section*{DIMENSIONS (INCHES)}

\section*{WIRING}

\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{l}
MODEL \\
NUMBER
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{c}
PICK UP \\
VOLTAGE
\end{tabular}} & \multicolumn{2}{|c|}{ RESPONSE TIMES } \\
OPERATE & RELEASE & OUTPUT \\
RATING \\
\hline SLH-120-ALE & \(95-130\) V. Adj. & 80 m. SEC & 0.5 SEC & 3 VA \\
\hline SLH-230-ALE & \(190-270\) V. Adj. & 150 m. SEC & 0.5 SEC & 3 VA \\
\hline SLH-440-ALE & \(430-480 \mathrm{~V} . \mathrm{Adj}\). & 1.0 SEC & 2.0 SEC & 7 VA \\
\hline
\end{tabular}

All voltage referenced are phase-to-phase.

Phase \(\mathcal{E}\) Under Voltage Monitor

DIMENSIONS (IICHES)

\section*{WIRING}

The SLJ Series has a built-in Delay-on-Make Time Delay. The Sப continuously monitors the three phase lines for adverse conditions such as PHASE LOSS (single phasing), UNDER VOLTAGE (brown outs), and PHASE REVERSAL (improper sequence). When any of these conditions occur, the internal relay will de-energize (DROP-OUT). When the fault is corrected, the field adjustable Delay-on Make delay begins. Upon completion of the time delay, the internal relay will energize (PICK-UP). Any subsequent interruptions will reset the delay period.
The SL's phase monitor operates the same as the SLA Series. It will drop-out for a phase loss if any phase drops below \(83 \%\) of its nominal setting and it will also drop-out for under voltage if all three phases drop below \(90 \%\) of its nominal setting. It is phase sequence sensitive and will not allow start-up if the three phases are reversed.
The \(\mathrm{S} \amalg\) is available in the same standard operating voltage ranges as our other Phase Monitors (see table below). The Delay-on-Make Timer is field adjustable from 0.2 to 8.0 minutes.

There are two LED indicators. The green indicator glows when all conditions are normal, and the red indicator glows when the internal relay is energized.
The \(S \amalg\) is ideally suited for multiple equipment installations to stagger start equipment after a fault condition.

\section*{SPECIFICATIONS}

OPERATING See Table Below VOLTAGE
\begin{tabular}{lll}
\hline OUTPUT RATING & \multicolumn{1}{l}{ See Table Below } \\
\hline \multirow{2}{*}{ INDICATORS LED } & Green LED & Glows When All Conditions Are Normal \\
\cline { 2 - 3 } & Red LED & Glows When Relay is Energized \\
\hline RESPONSE TIMES & Operate & 0.2 to 8.0 Minutes, Adjustable \\
\cline { 2 - 3 } & Release & See Table Below \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(+131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Style "E" Lexan, Surface Mounted \\
\hline TERMINATIONS & (12) \#8-32 Screw Terminals \\
\hline WEIGHT & 14 oz.
\end{tabular}
- Models available up to 690 VAC PROTECTS 3-PHASE EQUIPMENT
- Automatic or Manual Reset
- Delay-on-Make Timer AGAINST:
- LED Indicators for Fault Conditions
- Under Voltage
- Over Voltage
- Phase Loss
- Phase Reversal
- Phase Unbalance
- Phase Shift
- Frequency Shift

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{VOLTAGE TRIP POINTS} & P Drop-Out & \(\pm 10 \%\) & Setting & \\
\hline & Pick-Up & \(\pm 7 \%\) of & etting & \\
\hline \multirow[t]{2}{*}{FREQUENCY TRIP POINTS} & TRIP Drop-Out & \(\pm 4 \%\) of & Hz (380 & O Hz) \\
\hline & Pick-Up & \(\pm 3 \%\) of & Hz (380 & O Hz) \\
\hline \multirow[t]{2}{*}{UNBALANCE TRIP POINTS} & TRIP Drop-Out & & & \\
\hline & Pick-Up & 5\% & & \\
\hline RESET & Automatic; & Manual; & omatic with & emory* \\
\hline \multicolumn{5}{|l|}{PHASE SEQUENCE ABC (Will Not Operate CBA)} \\
\hline OUTPUT RATING & \multicolumn{4}{|l|}{DPDT, 360 VA Inductive; \(1 / 2 \mathrm{hp}\) 3 A Resistive @ 600 VAC SLM (120, 230) ASE - DPDT, 470 VA 10A Resistive@240VAC} \\
\hline \multicolumn{5}{|l|}{TERMINATIONS \#8-32 Screw Terminals} \\
\hline \multirow[t]{2}{*}{INDICATORS
LED*} & Designation & Color & State & Condition \\
\hline & Time Delay & Green & Flashing & Timing Output \\
\hline \multirow[t]{9}{*}{*Automatic with Memory MODE: The last fault is indicated and remains on when conditions return to normal. The indicator extinguishes only with reset or when new fault condition occurs.} & & & Normal ON & Energized \\
\hline & Under Voltage & Red & ON & Fault \\
\hline & Over Voltage & Red & ON & Fault \\
\hline & Phase Sequence, Shift & & ON & Fault \\
\hline & Frequency Shift & Red & ON & Fault \\
\hline & Unbalance & Red & ON & Fault \\
\hline & Operate & & & \\
\hline & Sampling & 2 SEC & & \\
\hline & Reset Delay & & \begin{tabular}{l}
\[
\text { Delay) }+(1
\] \\
Delay) Adj increments
\end{tabular} & 5 seconds table in one \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{7}{*}{} & \multicolumn{2}{|l|}{Release} \\
\hline & Under Voltage & 1.5 SEC, (approx.) \\
\hline & Over Voltage & 1.5 SEC, (approx.) \\
\hline & Frequency Shift & 1.5 SEC, (approx.) \\
\hline & Unbalance & 2.0 SEC, (approx.) \\
\hline & *Phase & 1.0 SEC, (approx.) \\
\hline & Loss/Shift & \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(+131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline POWER REQUIRED & 7 VA Typical & \\
\hline TRANSIENT & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2500 Volts for 10 ms}} \\
\hline PROTECTION & & \\
\hline ENCLOSURE & \multicolumn{2}{|l|}{Lexan Surface Mounted} \\
\hline WEIGHT & \multicolumn{2}{|l|}{22 oz .} \\
\hline
\end{tabular}

\section*{Microprocessor Based 3-Phase Monitor}

\section*{DIMENSIONS \\ (INCHES)}

\section*{WIRING}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
MODEL \\
NUMBER
\end{tabular} & \begin{tabular}{c}
NOMINAL \\
PHASE-TO-PHASE \\
VOLTAGE SET POINTS
\end{tabular} & \begin{tabular}{c}
MAXIMUM \\
VOLTAGE
\end{tabular} \\
\hline SLM-120-ASE & \(105,110,115,120,125,130\) & 143 VAC \\
\hline SLM-230-ASE & \(200,210,220,230,240,250\) & 275 VAC \\
\hline SLM-380-ASE & \(350,365,380,390,400,415\) & 457 VAC \\
\hline SLM-440-ASE & \(440,450,460,470,480,490\) & 540 VAC \\
\hline SLM-575-ASE & \(525,550,575,600\) & 690 VAC \\
\hline
\end{tabular}
*Automatic with Memory MODE: The last fault is indicated and remains on when conditions return to normal.

The indicator extinguishes only with reset or when new fault condition occurs.
The SLM Series is UL Listed under UL File Number E55826.

The UOA Series offers protection to SINGLE PHASE equipment that is required to operate above a certain voltage minimum.

\section*{OPERATION}

With operating voltage applied above the preset PICK-UP voltage, the internal relay will energize. When the voltage falls below the preset DROP-OUT voltage for a period longer than the release delay, the output relay will de-energize. When line conditions return above the preset PICK-UP voltage, the UOA Series automatically resets and the internal relay energizes.
The HYSTERESIS in each unit provides a differential between the PICK-UP and DROP-OUT trip points.

\section*{Single Phase Under Voltage Monitor}

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{OPERATING RATING} & Style A & DPDT, 5A @ 240 VAC, Resistive; 211 VA @ 240 VAC \\
\hline & Style N & SPDT, 10A @ 240 VAC, Resistive; 180 VA, Inductive, @ 120 VAC \\
\hline \multirow[t]{2}{*}{RESPONSE TIMES} & Operate & 50 mSEC . (approx.) (500 mSEC . on 12 VDC units) \\
\hline & Release & 0.5 SEC (approx.) \\
\hline \multirow[t]{2}{*}{TEMPERATURE RATING} & Operate & \(32^{\circ}\) to \(+131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline
\end{tabular}

POWER REQUIRED Models Up To 110 VDC: 3 Watts, Max.
Models Up To 300 VAC: 5 VA, Max.
WEIGHT 5 oz . to 5.5 oz .

\section*{WIRING}

PLUG-IN MODEL Style A

(DC POLARITY SHOWN)
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l}
MODEL \\
NUMBER
\end{tabular} & \begin{tabular}{c}
DROP-OUT \\
VOLTAGE
\end{tabular} & \begin{tabular}{c}
PICK-UP \\
VOLTAGE
\end{tabular} & \begin{tabular}{c}
HYSTERESIS \\
VOLTAGE
\end{tabular} \\
\hline UOA-24-A*A & \(19-27\) VAC & \(21-29\) VAC & 2 \\
\hline UOA-120-A*A & \(97-130\) VAC & \(102-135\) VAC & 5 \\
\hline UOA-208-A*A & \(177-222\) VAC & \(185-230\) VAC & 8 \\
\hline UOA-240-A*A & \(205-250\) VAC & \(215-260\) VAC & 10 \\
\hline UOA-12-D*A & \(9-14\) VDC & \(10-15\) VDC & 1 \\
\hline UOA-24-D*A & \(19-27\) VDC & \(21-29\) VDC & 2 \\
\hline UOA-48-D*A & \(38-53\) VDC & \(40-55\) VDC & 2 \\
\hline UOA-110-D*A & \(92-125\) VDC & \(97-130\) VDC & 5 \\
\hline UOA-220-D*A & \(185-230\) VDC & \(194-239\) VDC & 9 \\
\hline UOA-240-D*A & \(205-250\) VDC & \(215-260\) VDC & 10 \\
\hline UOA-120-AFN & 100 VAC & 105 VAC & 5 \\
\hline UOA-208-AFN & 180 VAC & 188 VAC & 8 \\
\hline UOA-220-AFN & 180 VAC & 187 VAC & 7 \\
\hline UOA-230-AFN & 190 VAC & 198 VAC & 8 \\
\hline UOA-240-AFN & 202 VAC & 210 VAC & 8 \\
\hline
\end{tabular}
*Adjustments - F = Fixed
\(\mathrm{K}=\mathrm{Knob}\)
L = Locknut

The VBA Series offers protection to SINGLE PHASE equipment that is
required to operate between two voltage limits. Supply voltage is monitored for a preselected UNDER and OVER voltage limit.

\section*{OPERATION}

With normal operating voltage applied, the internal relay will energize (PICK-UP). When the voltage falls outside the preset Over/Under trip points for longer than the release delay, the relay will de-energize (DROP-OUT). When line conditions return to normal, the VBA Series automatically resets and the internal relay energizes.
The HYSTERESIS in each unit on the Under and Over limits provides a differential between the PICK-UP and DROP-OUT trip points.

\section*{WIRING}

WIRING DIAGRAMS
(SHOWN IN DE-ENERGIZED STATE)

(DC POLARITY SHOWN)
RB-08 or PF083A

E55826
Style A only
Single Phase Voltage Band Monitor

\section*{SPECIFICATIONS}

POWER REQUIRED Models Up To 110 VDC: 3 Watts, Max. Models Up To 300 VAC: 5 VA, Max.
OUTPUT RATING Style A DPDT, 5A @ 240 VAC, Resistive; 211 VA @ 240 VAC
Style N SPDT, 10A @ 240 VAC, Resistive; 180 VA, @ 120 VAC
RESPONSE TIMES Operate 50 mSEC (approx.) (500 mSEC on 12 VDC units)
Release 0.5 SEC (approx.)
\begin{tabular}{lll}
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(+131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline WEIGHT & 50 &
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{l}
MODEL \\
VOLTAGE
\end{tabular} & \begin{tabular}{c}
NOMINAL \\
VOLTAGE
\end{tabular} & \begin{tabular}{c}
PICK-UP UNDER \\
VOLTAGE
\end{tabular} & \begin{tabular}{c}
PICK-UP OVER \\
VOLTAGE
\end{tabular} & \begin{tabular}{c}
HYSTERESIS \\
VOLTAGE
\end{tabular} \\
\hline VBA-24-A*A & 24 VAC & \(19-24\) & \(24-29\) & 2 \\
\hline VBA-120-A*A & 120 VAC & \(90-120\) & \(120-150\) & 5 \\
\hline VBA-208-A*A & 208 VAC & \(185-208\) & \(208-240\) & 8 \\
\hline VBA-240-A*A & 240 VAC & \(200-240\) & \(240-270\) & 10 \\
\hline VBA-12-D*A & 12 VDC & \(10-12\) & \(12-15\) & 1 \\
\hline VBA-24-D*A & 24 VDC & \(19-24\) & \(24-29\) & 1 \\
\hline VBA-28-D*A & 28 VDC & \(22-28\) & \(28-34\) & 1 \\
\hline VBA-48-D*A & 48 VDC & \(38-48\) & \(48-58\) & 2 \\
\hline VBA-110-D*A & 110 VDC & \(85-110\) & \(110-135\) & 5 \\
\hline VBA-24-AFN & 24 VAC & 21.6 & 26.4 & 0 \\
\hline VBA-120-AFN & 120 VAC & 108 & 132 & 0 \\
\hline VBA-208-AFN & 208 VAC & 187 & 229 & 0 \\
\hline VBA-220-AFN & \(208 / 240\) VAC & 198 & 242 & 0 \\
\hline VBA-230-AFN & 230 VAC & 207 & 253 & 0 \\
\hline VBA-240-AFN & 240 VAC & 216 & 264 & 0 \\
\hline
\end{tabular}
*Adjustments - F = Fixed
\[
\begin{aligned}
& \mathrm{K}=\mathrm{Knob} \\
& \mathrm{~L}=\text { Locknut }
\end{aligned}
\]

* (Delta Connection)

\author{
Motor Auto－Restart Relay
}

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline CONTROL VOLTAGE & 120 VAC \(50 / 60 \mathrm{~Hz}\) \\
\hline \begin{tabular}{l}
INPUT \\
SPECIFICATIONS
\end{tabular} & Under Voltage： 92 VAC Factor Preset （70－100 VAC Internal Adjust） Restart Voltage： 102 VAC Factor Preset （ 10 VAC \(\pm 10 \%\) Above U．V．） \\
\hline OUTPUT & \begin{tabular}{l}
SPDT Relay，Pilot Duty B150， 360 VA 10 Amps＠ 120 VAC Resistive \\
30，000 Operations Electrical＠Full Load
\end{tabular} \\
\hline POWER REQUIRED & 3 VA Max \\
\hline TEMPERATURES & \begin{tabular}{l}
Operate： \(0^{\circ} \mathrm{C}\) to \(55^{\circ} \mathrm{C}\) \\
Storage：\(-45^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline ENCLOSURE & Style Extended＂A＂LEXAN® Dust Cover \\
\hline TERMINATIONS／ & 8 Pin Plug－in（Model AAA） \\
\hline FUNCTION & \begin{tabular}{l}
8 Pin Plug－in with OL Relay \\
L2 Disconnect Feature（Model ABA） \\
11 Pin Plug－in（Model ACA） \\
11 Pin Plug－in with OL Relay \\
L2 Disconnect Feature（Model ADA）
\end{tabular} \\
\hline
\end{tabular}

\section*{OPERATION}

The MAR series provides automatic restart to a motor by bypass－ ing the start switch to re－energize M1 starter coil following a momentary drop or interruption of the control voltage．When control voltage drops below the under voltage trip point while the motor is running，the under voltage delay begins．If control voltage returns above the restart voltage point before the under voltage delay expires，the adjustable restart delay begins．Upon expiration of the restart delay，the internal relay energizes for the duration of the output interval providing restart．If control voltage fils for longer than the under voltage time delay or the motor was not initially running when control voltage failed，the unit will not restart the motor after restoration of poser．Instead a manual restart is required．This relay distinguishes between control volt－ age failures and stop pushbutton operations．A stop pushbutton operation de－energizes the output relay and terminates the timing sequences preventing an automatic restart．

\section*{DIMENSIONS}

\section*{WIRING}

Note: Wiring must be exactly as shown for proper operation

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|}
\hline ORDEING & & & \multirow[t]{2}{*}{Delay Range} \\
\hline MODEL NUMBER & MAR 120 & & \\
\hline \multicolumn{4}{|l|}{CONTROL VOLTAGE} \\
\hline 120 VAC 50/60 HZ & 120 & & \\
\hline \multicolumn{4}{|l|}{TERMINATIONS/FUNCTION} \\
\hline \multicolumn{2}{|l|}{8 Pin Plug-in} & AAA & D \\
\hline \multicolumn{2}{|l|}{8 Pin Plug-in with OL Relay L2 Disconnect Feature} & ABA & D \\
\hline \multicolumn{2}{|l|}{11 Pin Plug-in} & ACA & A or C \\
\hline \multicolumn{2}{|l|}{11 Pin Plug-in with OL Relay L2 Disconnect Feature} & ADA & B \\
\hline
\end{tabular}

\section*{DELAY RANGE DESCRIPTIONS}

A - U.V. 0.2 to 6.0 sec , Restart Delay 0.2 to 60 sec .
Restart Output Interval - Continuous
B — U.V. 0.2 to 6.0 sec , Restart Delay 0.2 to 60 sec .
Restart Output Interval - 5.0 sec (fixed)
C — U.V. 0.2 to 10.0 sec , Restart Delay 0.2 to 60 sec .
Restart Output Interval - 1.0 sec (fixed)
D - U.V. 4.0 sec (fixed), Restart Delay 2.0 to 120 sec .
Restart Output Interval - 5.0 sec (fixed)
Under voltage screwdriver adjustable ranges \(\pm 10 \%\)
Restart delay screwdriver adjustable ranges \(\pm 10 \%\)
Under voltage and restart output interval fixed ranges \(\pm 10 \%\)

\section*{OPERATIONS}

The ATC Diversified LPC Series is a conductive liquid level controller that uses two probes to sense tank level. There are two modes of operation that are user selectable.

Drain (Pump Down): The output relay will pick-up and the LED will turn on when the liquid level reaches the high level probe. When the liquid level falls below the low level probe the relay will drop-out and the LED will turn off.

Fill (Pump UP): The output relay will pick-up and the LED will turn on when the liquid level falls below the low level probe. When the liquid level reaches the high level probe the relay will drop-out and the LED will turn off.

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SUPPLY \\
VOLTAGE
\end{tabular} & \begin{tabular}{l}
\(24 V\) AC, 120 V AC, 240 V AC (+10/-20\%) \\
See ordering information below
\end{tabular} \\
\hline SUPPLY VOLTAGE & Pulsed 5V DC, at terminals \\
\hline SENSITIVITY & Adjustable: \(1 \mathrm{~K} \pm 500 \Omega\) at low end \(100 \mathrm{~K} \Omega \pm 25 \%\) at high end \\
\hline UNIT OPERATION & Drain or Fill (User Selectable) \\
\hline OUTPUT RATING & One SPDT, 5 Amps Resistive @ 240V AC \\
\hline ISOLATION & 1,500 volts \\
\hline POWER CONSUMPTION & 24 V Model 6VA, 120 V Model 6VA, 240 V Model 8VA \\
\hline TEMPERATURES & Operate: \(-20^{\circ} \mathrm{C}\) to \(+60^{\circ} \mathrm{C}\) \\
\hline & Storage: \(\quad-40^{\circ} \mathrm{C}\) to \(+80^{\circ} \mathrm{C}\) \\
\hline TERMINATIONS & 8-PIN OCTAL HEADER \\
\hline LED INDICATORS & Red LED illuminates when relay is active \\
\hline ENCLOSURE & Style "A" 8 Pin Plug-In \\
\hline AGENCY APPROVALS & cULus E55826 \\
\hline
\end{tabular}
\begin{tabular}{lr|r|}
\hline MODEL NUMBER & LPC & XXX \\
\cline { 2 - 2 } & AAA \\
\hline SUPPLY VOLTAGE & & \\
\hline 24 Volts AC & 24 \\
\hline 120 Volts AC & 120 \\
\hline 240 Volts AC & 240
\end{tabular}

ACCESSORY:
CPR Series Conductive Probes
Stainless Steel Tip, PVC Cable, Corrosion Res.

\section*{CURRENT MONITORS}

ATC-Diversified Electronics has a Current Monitor available to fit almost any monitoring application. The operation of the CM Series, AC Current Monitor/Relays, is based on an internal current transformer magnetically coupling the solid state sensing circuitry to the line being monitored. The operation of the CD Series, DC Current Monitor/Relays, is based on an internal Hall-effect device with a magnetic concentrator coupling the solid state sensing circuitry to the line being monitored. When the monitored current reaches a preset threshold point, an internal relay switches. The heavy duty contacts are used for instrumentation or signaling alarm circuits. The current sensing range of the ATC-Diversified Electronics AC Current Monitor/Relays can be increased by the use of an external Current Transformer. With the use of external Current Transformers you can monitor the current on almost any application. The feature matrix below shows the Current Monitor Series available from ATC-Diversified Electronics and highlights their features and specifications.

\section*{TYPICAL APPLICATIONS}

The following are some typical applications for ATC-Diversified Electronics Current Monitors:
- Sense current demand level
- Run time totalizer
- Detect conveyor load jam
- Detect heater element failure
- Detect the use of dull bits or blades
- Detect runway lights and radio tower light failures
- Remote motor sensing
- Sense load loss
- Detect broken fan belts or chains

FEATURE MATRIX
\begin{tabular}{|c|}
\hline & \multicolumn{4}{|l|}{SENSING FEATURES} & \multicolumn{3}{|c|}{CONTROL VOLTAGE} & \multicolumn{6}{|r|}{ADJUSTABLE CURRENT RANGE} & \multicolumn{3}{|r|}{ENCLOSURE} & \multicolumn{2}{|l|}{RESET} & \multicolumn{4}{|c|}{TIME DELAY} & & \\
\hline SERIES & & & & & \[
\begin{aligned}
& \underset{\sim}{\underset{\sim}{2}}
\end{aligned}
\] & \[
\begin{aligned}
& \underset{y}{\underset{~}{~}} \\
& \underset{\sim}{2}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Y } \\
& \text { Nָ }
\end{aligned}
\] & \begin{tabular}{l}
\(n\) \\
\(\sum_{i}^{n}\) \\
\multirow{2}{n}{} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{tabular} & & & & & \begin{tabular}{l}
n \\
\(\sum_{0}^{n}\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0
\end{tabular} & & & & & & & & & & & \\
\hline CBA & - & \(\bullet\) & & & & & \(\bullet\) & & - & \(\bullet\) & - & - & \(\bullet\) & & & - & \(\bullet\) & & - & & \(\bullet\) & & & \\
\hline CDD & - & - & & & & & \(\bullet\) & & - & - & \(\bullet\) & \(\bullet\) & & & & - & \(\bullet\) & & & - & & - & & \\
\hline CDO & - & & & & & & \(\bullet\) & & - & - & \(\bullet\) & \(\bullet\) & & & & - & \(\bullet\) & & & - & \(\bullet\) & & & \\
\hline CDU & & - & & & & & \(\bullet\) & & - & - & - & - & & & & - & - & & \(\bullet\) & & & - & & \\
\hline CLB & - & & \(\bullet\) & & & & \(\bullet\) & & & - & \(\bullet\) & & & & & - & \(\bullet\) & - & \(\bullet\) & & \(\bullet\) & & & \\
\hline CMB & \(\bullet\) & & & & \(\bullet\) & - & \(\bullet\) & & & 1-10 & amps & fixed & & \(\bullet\) & & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & \(\bullet\) \\
\hline CMD & - & - & & & \(\bullet\) & - & \(\bullet\) & - & - & - & - & - & & & & - & \(\bullet\) & & & \(\bullet\) & & \(\bullet\) & & \\
\hline CMG & & & & \(\bullet\) & & & & & & \[
\begin{aligned}
20-36 \\
\hline 0100
\end{aligned}
\] & amp & fixed only) & & & \(\bullet\) & \(\bullet\) \\
\hline CMI & \(\bullet\) & & & & & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & \(\bullet\) & - & \(\bullet\) & & & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & & \\
\hline CML & \(\bullet\) & & & & & - & - & \(\bullet\) & - & - & - & \(\bullet\) & \(\bullet\) & & & \\
\hline CMO & \(\bullet\) & & & & - & - & \(\bullet\) & - & - & - & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & - & \(\bullet\) & & & \(\bullet\) & \(\bullet\) & & & \\
\hline CMU & & - & & & - & - & - & - & - & - & - & \(\bullet\) & & \(\bullet\) & & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & & \(\bullet\) & & \\
\hline
\end{tabular}

The CBA Series is used to detect UNDER and OVER CURRENT conditions. When the monitored current is within the normal current band, both internal relays are de-energized (Drop-out). When the current rises above the over current setting for longer than 1.0 second, the over current relay energizes (Pick-up). If the current falls below the under current setting for longer than 1.0 second, the under current relay energizes. When the monitored current returns to normal, the relays will automatically reset. The over and under current trip points are independently adjustable.

An External CT may be used to extend the range of the Current Monitor.

AC Current Band Monitor

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline CONTROL VOLTAGE & 120 VAC, \(50 / 60 \mathrm{~Hz}\) \\
\hline \multirow[t]{6}{*}{TRIP POINTS} & Over Current \\
\hline & Pick-up See Table Below \\
\hline & Drop-out 2\% below Pick-up \\
\hline & Under Current \\
\hline & Pick-up See Table Below \\
\hline & Drop-out 2\% above Pick-up \\
\hline OUTPUT & 10 Amps @ 120 VAC, Resistive \\
\hline HYSTERESIS & 2\% \\
\hline \multirow[t]{2}{*}{RESPONSE TIME} & Operate 1.0 SEC \\
\hline & Release 30 mSEC \\
\hline INDICATORS & LED's Show Over/Under Current Status \\
\hline RESET & Automatic \\
\hline TEMPERATURE & Operate \(\quad 32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage \(\quad-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
CONTACT & (2) Form C Contacts. One each for Over/Under
\end{tabular}

ARRANGEMENT
\begin{tabular}{ll}
\hline ENCLOSURE & Lexan Surface Mounted; \#8-32 Screw Terminals \\
\hline WEIGHT & 16 oz.
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \begin{tabular}{l}
MODEL \\
NUMBER
\end{tabular} & \begin{tabular}{c}
UNDER \\
CURRENT RANGE
\end{tabular} & \begin{tabular}{c}
OVER \\
CURRENT RANGE
\end{tabular} \\
\hline CBA-120-ALE-1 & \begin{tabular}{c}
0.2 to 1.0 amps, \\
Adjustable
\end{tabular} & \begin{tabular}{c}
0.2 to 1.0 amps, \\
Adjustable
\end{tabular} \\
\hline CBA-120-ALE-5 & \begin{tabular}{c}
1.0 to 5.0 amps, \\
Adjustable
\end{tabular} & \begin{tabular}{c}
1.0 to 5.0 amps, \\
Adjustable
\end{tabular} \\
\hline CBA-120-ALE-10 & \begin{tabular}{c}
2.0 to 10 amps, \\
Adjustable
\end{tabular} & \begin{tabular}{c}
2.0 to 10 amps, \\
Adjustable
\end{tabular} \\
\hline CBA-120-ALE-20 & \begin{tabular}{c}
4.0 to 20 amps, \\
Adjustable
\end{tabular} & \begin{tabular}{c}
4.0 to 20 amps, \\
Adjustable
\end{tabular} \\
\hline CBA-120-ALE-30 & \begin{tabular}{c}
6.0 to 30 amps, \\
Adjustable
\end{tabular} & \begin{tabular}{c}
6.0 to 30 amps, \\
Adjustable
\end{tabular} \\
\hline CBA-120-ALE-40 & \begin{tabular}{c}
8.0 to 40 amps, \\
Adjustable
\end{tabular} & \begin{tabular}{c}
8.0 to 40 amps, \\
Adjustable
\end{tabular} \\
\hline
\end{tabular}

DIMENSIONS (INCHES)

\section*{WIRING}

The CDD Series may be used as an OVER CURRENT Monitor OR an UNDER CURRENT Monitor. The CDD has adjustable Delay-on-Operate and adjustable Delay-on-Release time delays. When the current exceeds the preset current trip point for longer than the Delay-onOperate time delay, the internal relay will energize (Pick-up). When the current drops below the preset current trip point for longer than the Delay-on-Release time delay, the internal relay will de-energize (Dropout). When used as an Over Current Monitor the Delay-on-Operate time delay is used to override inrush periods. When used as an Under Current Monitor, the Delay-on-Release timer is used to override a temporary under current condition.

DIMENSIONS (INCHES)

\section*{WIRING}

\section*{Universal DC Current Monitor}

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{TRIP POINTS} & Over Current \\
\hline & Pick-up See order information \\
\hline & Drop-out 5\% below Pick-up \\
\hline OUTPUT & SPDT, 10 Amps @ 240 VAC Resistive \\
\hline HYSTERESIS & 5\% \\
\hline \multirow[t]{2}{*}{RESPONSE TIME} & Operate 0.2 to 10 SEC, Adjustable \\
\hline & Release 0.2 to 10 SEC, Adjustable \\
\hline \multirow[t]{2}{*}{INDICATORS} & \begin{tabular}{ll}
Trip (Amber) & \(\begin{array}{l}\text { Glows when current is above } \\
\text { the trip point }\end{array}\) \\
\hline
\end{tabular} \\
\hline & Relay (Green) Glows when Relay is energized \\
\hline RESET & Automatic \\
\hline TEMPERATURE & Operate \(32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Lexan Surface Mounted; \#8-32 Screw Terminals \\
\hline WEIGHT & 20 oz. \\
\hline
\end{tabular}

MODEL NUMBER
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline model number & CDD & 120 & A & L & E & \\
\hline \multicolumn{2}{|l|}{CONTROL VOLTAGE 120 Volts} & 120 & & & & \\
\hline \multicolumn{3}{|l|}{TYPE OF VOLTAGE AC} & A & & & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
ADJUSTMENT \\
Lockshaft
\end{tabular}} & L & & \\
\hline \multicolumn{6}{|l|}{FEATURES} & 1 \\
\hline \multicolumn{6}{|l|}{0.5 to 2.5 amps adj .} & 2.5 \\
\hline \multicolumn{6}{|l|}{1.0 to 5.0 amps adj .} & 5 \\
\hline \multicolumn{6}{|l|}{2.0 to 10 amps adj .} & 10 \\
\hline \multicolumn{6}{|l|}{4.0 to 20 amps adj .} & 20 \\
\hline
\end{tabular}

The CDO Series is used to detect OVER CURRENT conditions. The internal relay energizes (Pick-up) when the monitored current exceeds the preset trip point for longer than the adjustable time delay. The delay is incorporated to prevent nuisance tripping caused by inrush currents. The CDO has an automatic reset feature. The internal relay de-energizes (Drop-out) when the current drops 5\% below the preset trip for longer than 0.2 seconds.

\section*{DC Over Current Monitor}

SPECIFICATIONS
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{TRIP POINTS} & \multirow[t]{2}{*}{Over Current Pick-up} & \multirow[b]{2}{*}{See order information} \\
\hline & & \\
\hline & Drop-out & 5\% below Pick-up \\
\hline OUTPUT & \multicolumn{2}{|l|}{SPDT, 10 Amps @ 240 VAC Resistive} \\
\hline HYSTERESIS & \multicolumn{2}{|l|}{5\%} \\
\hline \multirow[t]{2}{*}{RESPONSE TIME} & Operate & 0.2 to 10 SEC, Adjustable \\
\hline & Release & 0.2 SEC . \\
\hline \multirow[t]{2}{*}{INDICATORS} & Trip (Red) & Glows On Over Current \\
\hline & Relay (Green) & Glows when Relay is energized \\
\hline RESET & \multicolumn{2}{|l|}{Automatic} \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & \multicolumn{2}{|l|}{Lexan Surface Mounted; \#8-32 Screw Terminals} \\
\hline WEIGHT & 17 oz . & \\
\hline
\end{tabular}

\section*{DIMENSIONS (INCHES)}

\section*{WIRING}

\section*{OPERATION}

The CDU Series is used to detect UNDER CURRENT conditions. The internal relay is energized (Pick-up) when the monitored current is above the preset trip point. The relay de-energizes (Drop-out) when the current falls below the trip point for longer than the adjustable delay. The delay is incorporated to prevent nuisance tripping caused by momentary line dips. The relay re-energizes when the current rises \(5 \%\) above the Drop-out trip point for longer than 0.2 seconds. The relay has the automatic reset feature.

DIMENSIONS (INCHES)

\section*{WIRING}

\section*{DC Under Current Monitor/Relays}

\section*{SPECIFICATIONS}

CONTROL VOLTAGE \(120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\)
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{TRIP POINTS} & Over Current Pick-up & 5\% above Drop-out \\
\hline & Drop-out & See order information \\
\hline OUTPUT & \multicolumn{2}{|l|}{SPDT, 10 Amps @ 240 VAC Resistive} \\
\hline HYSTERESIS & \multicolumn{2}{|l|}{5\%} \\
\hline \multirow[t]{2}{*}{RESPONSE TIME} & Operate & 0.2 SEC \\
\hline & Release & 0.2 to 10 SEC, Adjustable \\
\hline \multirow[t]{2}{*}{INDICATORS} & Trip (Green) & Glows When Current is Above Preset Current Trip \\
\hline & Relay (Green) & Glows when Relay is energized \\
\hline RESET & \multicolumn{2}{|l|}{Automatic} \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & \multicolumn{2}{|l|}{Lexan Surface Mounted; \#8-32 Screw Terminals} \\
\hline WEIGHT & 17 oz. & \\
\hline
\end{tabular}

\section*{MODEL NUMBER}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MODEL NUMBER & CDU & 120 & A & L & E & \\
\hline CONTROL VOLTAGE 120 Volts & & 120 & & & & \\
\hline TYPE OF VOLTAGE AC & & & A & & & \\
\hline \begin{tabular}{l}
ADJUSTMENT \\
Lockshaft
\end{tabular} & & & & L & & \\
\hline \begin{tabular}{l}
FEATURES \\
0.2 to 1 amp adj .
\end{tabular} & & & & & & 1 \\
\hline 0.5 to 2.5 amps adj . & & & & & & 2.5 \\
\hline 1.0 to 5.0 amps adj . & & & & & & 5 \\
\hline 2.0 to 10 amps adj. & & & & & & 10 \\
\hline 4.0 to 20 amps adj. & & & & & & 20 \\
\hline
\end{tabular}

\section*{3-Phase Current Unbalance \(\mathcal{E}\) Over Current Monitor}

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline OPERATING VOLTAGE & 3-Phase, \(50 / 60 \mathrm{~Hz}, 600 \mathrm{~V}\) max \\
\hline CONTROL VOLTAGE & 120 VAC, \(50 / 60 \mathrm{~Hz}\) \\
\hline OVER CURRENT & See Table for Adjustable Ranges \\
\hline UNBALANCE RANGE & 5\% to 25\%, Adjustable \\
\hline INRUSH DELAY & 0.1 To 10 SEC, Adjustable; Initiated When Current of Any Phase rises 20\% Above the Max. Operating Current \\
\hline OUTPUT & SPDT, 10 amp @ 240 VAC Resistive \\
\hline HYSTERESIS & 2\% of Unbalance Setting \\
\hline \multirow[t]{2}{*}{RESPONSE TIME} & Operate 1 Second, Max. \\
\hline & Release 100 mSEC \\
\hline INDICATOR & LED Glow When All Conditions Are Normal \\
\hline RESET & Automatic or Manual \\
\hline \multirow[t]{2}{*}{TEMPERATURE RATING} & Operate \(\quad 32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline & Storage \(\quad-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline WEIGHT & 13 oz . \\
\hline
\end{tabular}

\section*{DIMENSIONS (INCHES)}

\section*{WIRING}

\section*{OPERATION}

The CMB Series relay is used to detect the presence of AC current． When the monitored current exceeds the trip point for longer than 30 milliseconds，the internal relay energizes．When the monitored current drops below the trip point for longer than 0.5 seconds，the internal relay de－energizes．The Delay－on－Release is incorporated to prevent nuisance tripping caused by momentary dips in the load line．

An External CT may be used to extend the range of the Current Monitor．

DIMENSIONS（INCHES）

WIRING

\section*{MODEL NUMBER}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MODEL NUMBER & CMB & & & F & A & \\
\hline \multicolumn{7}{|l|}{CONTROL VOLTAGE} \\
\hline \multicolumn{2}{|l|}{24 Volts AC} & 24 & A & & & \\
\hline \multicolumn{2}{|l|}{24 Volts DC（Not c \(\boldsymbol{T}^{\text {u }}\) us ）} & 24 & D & & & \\
\hline \multicolumn{2}{|l|}{120 Volts AC} & 120 & A & & & \\
\hline \multicolumn{7}{|l|}{CURRENT TRIP POINTS} \\
\hline \multicolumn{7}{|l|}{1 amp} \\
\hline \multicolumn{7}{|l|}{2 mps 2} \\
\hline \multicolumn{7}{|l|}{3 amps} \\
\hline \multicolumn{7}{|l|}{4 amps 退 4} \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{6 amps 析 6} \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{8 amps 8} \\
\hline \multicolumn{7}{|l|}{9 amps 仡 9} \\
\hline 10 amps & & & & & & 10 \\
\hline
\end{tabular}

\section*{AC Go／No－Go Current Monitor／Relay}
－Easy Installation
－No physical connection to the AC line that is being monitored
－Magnetically coupled by passing supply line through protruding Current Transformer
－8－Pin，Plug－in

\section*{SPECIFICATIONS}

CONTROL VOLTAGE 24 or 120 VAC； \(50 / 60 \mathrm{~Hz}, 24\) VDC
\begin{tabular}{|c|c|}
\hline TRIP POINTS & 1－10 Amps，Fixed \\
\hline AC INPUT CURRENT & Up to 50 Amps \\
\hline OUTPUT & \begin{tabular}{l}
SPDT， 10 Amps＠ 240 VAC Resistive； 211 VA＠ 120 VAC Inductive： \\
1／6 Horsepower＠ 120 VAC or \\
1／3 Horsepower＠ 240 VAC
\end{tabular} \\
\hline POWER CONSUMPTION & 3 Watts（Approximately） \\
\hline \multirow[t]{2}{*}{RESPONSE TIME} & Operate 30 mSEC \\
\hline & Release 0．5 SEC \\
\hline \multirow[t]{2}{*}{LIFE EXPECTANCY} & Mechanical 10 Million Operations（Minimum） \\
\hline & \(\begin{array}{ll}\text { Electrical } & \begin{array}{l}100,000 \text { Operations＠} \\ \\ \text { Rated Load }\end{array}\end{array}\) \\
\hline DUTY CYCLE & Continuous \\
\hline TEMPERATURE & Operate \(\quad 32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage \(\quad-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline SOCKETS & RB－08 or PF083A \\
\hline ENCLOSURE & Lexan Dust Cover；8－Pin plug－in \\
\hline WEIGHT & 6 oz \\
\hline
\end{tabular}

\section*{OPERATION}

\section*{The CMD Series may be used as an OVER CURRENT Monitor or an} UNDER CURRENT Monitor.

The CMD has adjustable Delay-on-Operate and adjustable Delay-onRelease time delays. When the current exceeds the preset current trip point for longer than the Delay-on-Operate time delay, the internal relay will energize (Pick-up). When the current drops below the preset current trip point for longer than the Delay-on-Release time delay, the internal relay will de-energize (Drop-out). When used as an over current monitor the Delay-on-Operate time delay is used to override inrush periods. When used as an under current monitor, the Delay-on-Release timer is used to override a temporary under current condition.

An External CT may be used to extend the range of the Current Monitor.

\section*{Universal AC Current Monitor}

\section*{SPECIFICATIONS}
\begin{tabular}{ll}
CONTROL VOLTAGE & 24 or \(120 \mathrm{VAC} ; 50 / 60 \mathrm{~Hz}, 24 \mathrm{VDC}\) \\
\hline OUTPUT & DPDT, 10 Amp @ 120 VAC Resistive \\
\hline RESPONSE TIME & Operate \(\quad 0.1\) to 10 SEC Adjustable \\
\cline { 2 - 2 } & Release \(\quad 0.3\) to 30 SEC Adjustable \\
\hline INDICATORS & Glows when relay is energized \\
\hline RESET & Automatic \\
\hline HYSTERESIS & \(5 \%\) \\
\hline TEMPERATURE & Operate \(\quad 32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage \(\quad-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline SOCKETS & RB-08 or PF083A \\
\hline ENCLOSURE & Lexan Dust Cover; 8-Pin plug-in \\
\hline WEIGHT & 13 oz
\end{tabular}

\section*{DIMENSIONS (INCHES)}

MODEL NUMBER
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MODEL NUMBER & CMD & & & 5 & E & \\
\hline CONTROL VOLTAG 24 Volts & & 24 & & & & \\
\hline 120 Volts & & 120 & & & & \\
\hline TYPE OF CONTRO AC & & & A & & & \\
\hline DC & & & D & & & \\
\hline \multicolumn{7}{|l|}{CURRENT TRIP POINTS} \\
\hline \multicolumn{5}{|l|}{0.2 to 1 amp adj. max continuous 11.9 amps} & & 1 \\
\hline \multicolumn{5}{|l|}{1.0 to 5.0 amps adj. max continuous 13.4 amps} & & 5 \\
\hline \multicolumn{5}{|l|}{2.0 to 10 amps adj. max continuous 25 amps} & & 10 \\
\hline \multicolumn{5}{|l|}{4.0 to 20 amps adj. max continuous 25 amps} & & 20 \\
\hline
\end{tabular}

\section*{OPERATION}

The CMG Series is a self powered Current Monitor/Relay that is used to detect the presence of \(A C\) current. When the monitored current exceeds the trip point for longer than 400 mSec ., the internal relay energizes (Pick-up). When the monitored current drops below the trip point for longer than 50 mSec ., the internal relay de-energizes (Drop-out). No physical connection is required as the line to be monitored is magnetically coupled by passing the conductor through the protruding Current Transformer of the monitor. No external supply is needed to power the monitor.
The current trip point specified is with one turn through the transformer. Each time the number of turns through the transformer doubles, the trip point effectively halves. Example: CMG-0100-20 will trip at 20 amps with one turn passing through the transformer. By placing two turns through the transformer, the relay will trip at 10 amps . Likewise, four turns will cause the relay to trip at 5 amps . (See below)

\section*{DIMENSIONS (INCHES)}

\section*{WIRING}

One Turn Through Transformer

E55826

\section*{AC Self Powered Go/No-Go Current Monitor/Relays}
- No physical connection to the AC line that is being monitored
- Magnetically coupled by passing supply line through protruding Current Transformer
- Withstands 400 Ampere-Turns Continuous
- No supply voltage required
- Will operate on \(24,120,240\) or 480 VAC lines
- 1/4" Quick Disconnect Terminals

\section*{SPECIFICATIONS}

CONTROL VOLTAGE Not Required
\begin{tabular}{ll}
\hline TRIP POINTS & Pick-up See Order Information \\
\cline { 2 - 2 } & Drop-out \(25 \%\) below Pick-up \\
\hline OUTPUT & \begin{tabular}{l}
SPST - N/0,5 Amps @ 240 VAC, Res. \\
(Available as a normally closed contact upon \\
request \#CMG-0200)
\end{tabular} \\
&
\end{tabular}
\begin{tabular}{lll}
\hline HYSTERESIS & \(25 \%\) & \\
\hline RESPONSE TIME & Operate & 400 mSec. (Approximately) \\
\cline { 2 - 3 } & Release & 50 mSec.
\end{tabular}
\begin{tabular}{ll}
\hline ACCURACY & \(\pm 5 \%\) on Pick-up \\
\hline TERMINATIONS & (2) \(1 / 4\) " Quick Disconnect Terminals
\end{tabular}
\begin{tabular}{lll}
\hline RESET & \multicolumn{2}{l}{ Automatic } \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Style "D" Surface Mounted \\
\hline WEIGHT & 4 oz.
\end{tabular}

\section*{MODEL NUMBER}
\begin{tabular}{|c|c|c|c|}
\hline MODEL NUMBER & CMG & 0100 & \\
\hline \multicolumn{4}{|l|}{CURRENT TRIP POINTS} \\
\hline 20 amps & & & 20 \\
\hline 24 amps & & & 24 \\
\hline 28 amps & & & 28 \\
\hline 32 amps & & & 32 \\
\hline 36 amps & & & 36 \\
\hline
\end{tabular}

SOLID-STATE OUTPUT SELF POWERED

\section*{AC Go/No-Go Current Monitor}
- No physical connection to the AC line that is being monitored
- Magnetically coupled by passing supply line through protruding Current Transformer
- No supply voltage required
- Will operate on \(24,120,240\) or 480 VAC lines
- Easy installation
- \(1 / 4\) " Quick Disconnect Terminals

\section*{SPECIFICATIONS}

CONTROL VOLTAGE Not Required
\begin{tabular}{lll}
\hline TRIP POINTS & Pick-up & 2 Amps \\
\cline { 2 - 3 } & Drop-out & \(25 \%\) below Pick-up
\end{tabular}

OUTPUT Solid State, SPST-N/O 1 Amp Resistive; 40 VA Run @ 120 VAC Inductive
MAXIMUM 200 Amp turns @ \(25^{\circ} \mathrm{C}\)

CONTINUOUS
CURRENT
\begin{tabular}{lll}
\hline RESPONSE TIME & Operate & \begin{tabular}{l}
\(2-10 \mathrm{mSEC}\) @ 130 Amps; 400 mSEC \\
@ \(10 \%\) over
\end{tabular} \\
\cline { 2 - 3 } & Release & 400 mSEC (Approximately). \\
\hline \begin{tabular}{l}
ABSOLUTE \\
MAXIMUM OUTPUT \\
VOLTAGE
\end{tabular} & 280 VAC \\
\hline ACCURACY & \(20 \%\) on Pick-up \\
\hline TERMINATIONS & (2) \(1 / 4^{\prime \prime}\) Quick Disconnect Terminals \\
\hline RESET & Automatic \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Style "D" Surface Mounted \\
\hline WEIGHT & 4 oz.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{RESPONSE TIME} & Operate & \begin{tabular}{l}
2-10 mSEC @ 130 Amps; 400 mSEC \\
@ 10\% over
\end{tabular} \\
\hline & Release & 400 mSEC (Approximately). \\
\hline ABSOLUTE & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{280 VAC}} \\
\hline MAXIMUM OUTPUT & & \\
\hline VOLTAGE & & \\
\hline ACCURACY & \multicolumn{2}{|l|}{20\% on Pick-up} \\
\hline TERMINATIONS & \multicolumn{2}{|l|}{(2) 1/4" Quick Disconnect Terminals} \\
\hline RESET & \multicolumn{2}{|l|}{Automatic} \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & \multicolumn{2}{|l|}{Style "D" Surface Mounted} \\
\hline WEIGHT & 4 oz . & \\
\hline
\end{tabular}

\section*{OPERATION}

The CMG-0101 Series is a solid state self powered Current Monitor that is used to detect the presence of \(A C\) current. When the monitored current exceeds the trip point for longer than 400 mSec ., the output energizes (Pick-up). When the monitored current drops below the trip point for longer than 400 mSec ., the output de-energizes (Dropout). No physical connection is required as the line to be monitored is magnetically coupled by passing the conductor through the protruding Current Transformer of the monitor. No external supply is needed to power the monitor.

\section*{DIMENSIONS (INCHES)}

\begin{tabular}{c|c}
\hline MODEL \\
NUMBER & DESCRIPTION \\
CMG-0101 & AC GO/NO-GO Current Mon \\
\hline
\end{tabular}

\section*{OPERATION}

The CMI Series AC OVER CURRENT Monitor Relay operates in the FAILSAFE MODEL as the relay is energized (pick-up) when the monitored AC current is normal. The relay de-energizes (Drop-out) when the monitored current rises above the preset trip point or the control voltage is removed. When current is initially applied, a time delay begins. This inhibits the over current sensors while high inrush currents are present. The delay is field adjustable and is set so the delay period is slightly longer than the inrush time of the motor. If the monitored current is above the preset trip point when the delay elapses, the relay de-energizes. (Figure 1) If the current drops to the normal run current of the motor prior to the completion of the delay period, the relay remains energized until the current rises above the trip point, which indicates an abnormal condition. At that time the relay deenergizes and remains locked-out until the reset button is pressed or the control voltage is interrupted, and re-applied. (Figure 2) A typical application is for conveyor jam up detection.
An External CT may be used to extend the range of the Current Monitor.

\section*{DIMENSIONS (INCHES)}

\section*{AC Over Current Monitor}

\section*{SPECIFICATIONS}

CONTROL VOLTAGE 24 or \(120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\)
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{TRIP POINTS} & Pick-up & See Order Information \\
\hline & Drop-out & Press Reset Button or Restore Control Voltage \\
\hline OUTPUT & \multicolumn{2}{|l|}{DPDT, 10 Amps @ 120 VAC, Resistive} \\
\hline TIME DELAY & \multicolumn{2}{|l|}{0.2 to 10 SEC, Adjustable On Motor Starting} \\
\hline OPERATING TIME & \multicolumn{2}{|l|}{50 mSEC (After Initial Delay has Timed Out)} \\
\hline CURRENT WITHSTAND & \multicolumn{2}{|l|}{20 Times Nominal for 1 Second} \\
\hline ISOLATION & \multicolumn{2}{|l|}{2500 Volts Between Input and All Other Terminals} \\
\hline INDICATOR & \multicolumn{2}{|l|}{Glows on Normal Current} \\
\hline RESET & \multicolumn{2}{|l|}{Manual, Press Button or Interrupt Control Voltage} \\
\hline RESET TIME & \multicolumn{2}{|l|}{100 mSEC After Lock-Out} \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(131{ }^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-49^{\circ}\) to \(185{ }^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Lexan Sur & Mounted; \#8-32 Screw Terminals \\
\hline WEIGHT & 11 oz . & \\
\hline
\end{tabular}
\begin{tabular}{ll}
TRIP POINTS & Pick-up \(\quad\)\begin{tabular}{l}
See Order Information \\
\end{tabular} \\
\hline Drop-out \begin{tabular}{l}
Press Reset Button or \\
Restore Control Voltage
\end{tabular} \\
\hline OUTPUT & DPDT, 10 Amps @ 120 VAC, Resistive \\
\hline TIME DELAY & 0.2 to 10 SEC, Adjustable On Motor Starting \\
\hline OPERATING TIME & 50 mSEC (After Initial Delay has Timed Out) \\
\hline \begin{tabular}{l}
CURRENT \\
WITHSTAND
\end{tabular} & 20 Times Nominal for 1 Second \\
\hline ISOLATION & 2500 Volts Between Input and All Other Terminals \\
\hline INDICATOR & Glows on Normal Current \\
\hline RESET & Manual, Press Button or Interrupt Control Voltage \\
\hline RESET TIME & 100 mSEC After Lock-Out \\
\hline TEMPERATURE & Operate \(\quad 32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage \(\quad-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Lexan Surface Mounted; \#8-32 Screw Terminals \\
\hline WEIGHT & 11 oz.
\end{tabular}
\begin{tabular}{ll}
TRIP POINTS & Pick-up \(\quad\)\begin{tabular}{l}
See Order Information \\
\end{tabular} \\
\hline Drop-out \begin{tabular}{l}
Press Reset Button or \\
Restore Control Voltage
\end{tabular} \\
\hline OUTPUT & DPDT, 10 Amps @ 120 VAC, Resistive \\
\hline TIME DELAY & 0.2 to 10 SEC, Adjustable On Motor Starting \\
\hline OPERATING TIME & 50 mSEC (After Initial Delay has Timed Out) \\
\hline \begin{tabular}{l}
CURRENT \\
WITHSTAND
\end{tabular} & 20 Times Nominal for 1 Second \\
\hline ISOLATION & 2500 Volts Between Input and All Other Terminals \\
\hline INDICATOR & Glows on Normal Current \\
\hline RESET & Manual, Press Button or Interrupt Control Voltage \\
\hline RESET TIME & 100 mSEC After Lock-Out \\
\hline TEMPERATURE & Operate \(\quad 32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage \(\quad-49^{\circ}\) to \(185^{\circ}{ }^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Lexan Surface Mounted; \#8-32 Screw Terminals \\
\hline WEIGHT & 11 oz.
\end{tabular}

MODEL NUMBER
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MODEL NUMBER & CMI & & A & S & E & \\
\hline \multicolumn{6}{|l|}{CONTROL VOLTAGE} & \\
\hline 120 Volts & & 120 & & & & \\
\hline \multicolumn{7}{|l|}{CURRENT TRIP POINTS} \\
\hline 0.2 to 1 amp adj. & & & & & & 1 \\
\hline 1.0 to 5.0 amps adj. & & & & & & 5 \\
\hline 2.0 to 10 amps adj . & & & & & & 10 \\
\hline 4.0 to 20 amps adj . & & & & & & 20 \\
\hline
\end{tabular}

\section*{OPERATION}

The CML Series is used to detect OVER CURRENT conditions. The internal relay energizes (Pick-up) when the monitored current exceeds the preset trip point for longer than the adjustable time delay period. The adjustable delay is incorporated to prevent nuisance tripping caused by motor inrush currents. The CML has the MANUAL RESET feature. The internal relay de-energizes (Drop-out) when the reset button is pressed. If the current is below the trip point when the button is released, the relay will remain de-energized. If the current is above the trip point, the relay will re-energize.

An External CT may be used to extend the range of the Current Monitor.

INCLUDES MANUAL RESET

\section*{AC Over Current Monitor}

\section*{SPECIFICATIONS}
\begin{tabular}{lll}
CONTROL VOLTAGE & 24 or \(120 \mathrm{VAC} ; 50 / 60 \mathrm{~Hz}\) \\
\hline TRIP POINTS & Pick-up & See order information \\
\cline { 2 - 3 } & Drop-out & \(\begin{array}{l}5 \% \text { below Pick-up } \\
\text { (After Manual Reset) }\end{array}\) \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline OUTPUT & \multicolumn{2}{l}{ DPDT, 10 Amp @ 120 VAC Resistive } \\
\hline HYSTERESIS & \(5 \%\) \\
\hline RESPONSE TIME & Operate & \multicolumn{1}{c}{0.1 to 5 SEC, Adjustable } \\
\hline INDICATORS & \begin{tabular}{l}
LED Glows On Over Current \\
(Style "E" Enclosure Only)
\end{tabular} \\
\hline RESET & \multicolumn{2}{l}{ Manual } \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\cline { 2 - 3 } RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Style A & Lexan Dust Cover; 11 -pin Plug-in \\
\cline { 2 - 3 } & Style E & \begin{tabular}{l}
Lexan Surface Mounted: \\
\#8-32 Screw Terminals
\end{tabular} \\
\hline
\end{tabular}

SOCKET
Style A: RB-11 Style E: 13 oz.
WEIGHT 6 oz.

\section*{MODEL NUMBER}

\section*{DIMENSIONS} (INCHES)

\section*{WIRING}

\section*{OPERATION}

The CMO Series is used to detect OVER CURRENT conditions. The internal relay energizes (Pick-up) when the monitored current exceeds the preset trip point for longer than the adjustable time delay. The delay is incorporated to prevent nuisance tripping caused by motor inrush currents. The CMO has an automatic reset feature. The internal relay deenergizes (Dropout) when the current drops 5\% below the preset trip for longer than 0.2 seconds.

An External CT may be used to extend the range of the Current.

\section*{DIMENSIONS (INCHES)}

\section*{AC Over Current Monitor/Relays}

\section*{SPECIFICATIONS}

CONTROL VOLTAGE 24 or 120 VAC/DC; \(50 / 60 \mathrm{~Hz}\)
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{TRIP POINTS} & Pick-up & See order information \\
\hline & Drop-out & 5\% below Pick-up \\
\hline OUTPUT & \multicolumn{2}{|l|}{DPDT, 10 Amps @ 120 VAC, Resistive} \\
\hline HYSTERESIS & \multicolumn{2}{|l|}{5\%} \\
\hline \multirow[t]{2}{*}{RESPONSE TIME} & Operate & 0.1 to 5 SEC, Adjustable \\
\hline & Release & 0.2 SEC \\
\hline INDICATOR & \multicolumn{2}{|l|}{LED Glows On Over Current (Style "E" Enclosure Only)} \\
\hline SOCKET & \multicolumn{2}{|l|}{RB-11 Socket for Style A.} \\
\hline RESET & \multicolumn{2}{|l|}{Automatic} \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-49^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-45^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline \multirow[t]{2}{*}{ENCLOSURE} & Style A & Lexan Dust Cover; 11-pin Plug-in \\
\hline & Style E & Lexan Surface Mounted: \#8-32 Screw Terminals \\
\hline
\end{tabular}

WEIGHT
Style A: 5 oz. Style E: 13 oz.

\section*{MODEL NUMBER}

WIRING

\section*{OPERATION}

The CMU Series is used to detect UNDER CURRENT conditions. The internal relay is energized (Pick-up) when the monitored current is above the preset trip point. The relay de-energizes (Drop-out) when the current falls below the trip point for longer than the adjustable delay. The delay is incorporated to prevent nuisance tripping caused by momentary line dips. The relay re-energizes when the current rises \(5 \%\) above the Drop-out trip point for longer than 0.1 seconds. The relay has the automatic reset feature.

An external CT may be used to extend the range of the Current Monitor.

DIMENSIONS (INCHES)

Style A, Plug-in

CT-200/5

CT-500/5, 1000/5

\section*{ORDERING INFORMATION}
\begin{tabular}{lccc}
MODEL & CURRENT RATIO & BURDEN & ACCURACY CLASS \\
\hline CT-30/5 & \(30 / 5 \mathrm{~A}\) & 1 VA & 5 \\
\hline CT-50/5 & \(50 / 5 \mathrm{~A}\) & 1.5 VA & 3 \\
\hline CT-100/5 & \(100 / 5 \mathrm{~A}\) & 3 VA & 1 \\
\hline CT-200/5 & \(200 / 5 \mathrm{~A}\) & 2.5 VA & 0.5 \\
\hline CT-500/5 & \(500 / 5 \mathrm{~A}\) & 5 VA & 1 \\
\hline CT-1000/5 & \(1000 / 5 \mathrm{~A}\) & 15 VA & 0.5 \\
\hline
\end{tabular}

\section*{ACCESSORIES}

DIN Rail Clamp
CTDRC

\section*{Current Transformers}

The CT Current Transformers are available in a wide range of bus bar sizes and a current measuring range of 30 A to 1000A. The transformers are CE and UL cURus listed.
- Use with different bus bar
- Accuracy: Class 0.5 to 5
- 30/5 to 1000/5 Amperes
- Panel Mount/ DIN Rail Mount (Optional Accessory)

\section*{SPECIFICATIONS}
\begin{tabular}{llr}
INPUT/OUTPUT & Rated primary rating & 30 A to 1000A \\
\cline { 3 - 3 } & Rated secondary output & 5 A \\
\hline TECHNICAL & Rated burden (VA) & 1VA to 15VA \\
SPECIFICATIONS & Class of accuracy & 0.5 to 5 \\
\cline { 2 - 3 } & Thermal Nominal Continuous \\
& \multicolumn{2}{c}{\(120 \%\) of In Rated Current (Icth) } \\
\cline { 2 - 3 } & Thermal short circuit current (Ith)
\end{tabular} lth \(=60 \mathrm{X} \ln\) for 1 sec
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Instrument security factor FS \(<5\)}} \\
\hline & & \\
\hline & Insulation class & \(\mathrm{E}\left(120^{\circ} \mathrm{Cmax}\right)\) \\
\hline & Max operating voltage (Um) & 720 V maximum \\
\hline & Isolation test voltage & 3 kV AC 1 min \\
\hline & Nominal rated frequency & AC \(50 \mathrm{~Hz}-60 \mathrm{~Hz}\) \\
\hline \multirow[t]{3}{*}{ENVIRONMENTAL SPECIFICATIONS} & Ambient temperature & \(0^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\) \\
\hline & Humidity \(\quad<95 \% \mathrm{RH}\) & non condensing) \\
\hline & Storage temperature & \(-5^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\) \\
\hline MOUNTING & \multicolumn{2}{|l|}{Mounting modes Panel Mount / DIN Rail Mount} \\
\hline STANDARD & Applicable standard & IEC 61869-2 \\
\hline
\end{tabular}

CTDRC - DIN Rail Clamp

\section*{THREE PHASE CURRENT UNBALANCE}

Balanced or matched currents on a three phase system are difficult to maintain because of the many varying factors involved such as, unequal single phase loading, poor connections and cabling and/or dirty or burnt starter contacts.

Although these varying factors can be controlled to maintain as close as possible a balanced line, the unseen conditions such as overheated motor windings, burnt bearings, low voltage, high voltage and single phasing need to be constantly monitored to protect your valuable equipment.
The CLB Series Three Phase Current Unbalance and Over Current Monitor (page 176) offers this protection.

To determine the condition of your three phase line and to properly select the CLB Series percent unbalance setting a simple calculation formula is needed as follows:
\[
\frac{(I \max -I \operatorname{avg})}{I \max } \times 100
\]

\section*{EXTERNAL CURRENT TRANSFORMERS}

The load or burden that can be connected to the secondary of the Current Transformer is usually specified in VA. The rated accuracy of the Current Transformer is guaranteed only when the sum of the VA ratings of all devices (ampmeters, wattmeters, current monitors, etc.) connected to the secondary windings does not exceed the specified VA rating.
The interconnecting conductor resistance must also be considered, especially when the Transformer is installed at some distance from the Current Monitor or other load.

For the wiring, the VA can be calculated using Ohm's Law:
\[
V A=E \times I=(I \times R) \times I=I^{2} R
\]

Where \(I=5\) Amps and \(R\) is the \(D C\) resistance of the wire.
All of the standard DE Current Transformers have a rating of 2 VA except the 2500/5 version which has a 5 VA rating.

From the above formula we can also calculate the maximum resistance that can be connected to the secondary of a Current Transformer:
\(V A=I^{2} R\), Hence \(R=\frac{V A}{I^{2}}\)
Example:
\(V A=2 \quad R_{\max }=\frac{V A}{I^{2}}=\frac{2}{(5)^{2}}=0.08\) Ohms \(=80\) milliohms
\(\mathrm{VA}=5 \quad \mathrm{R}_{\max }=\frac{\mathrm{VA}}{\mathrm{I}^{2}}=\frac{5}{(5)^{2}}=0.2\) Ohms \(=200\) milliohms

Example: 1. Measure the current on each leg.
\[
\text { Assume } \quad \begin{aligned}
& A=10 \mathrm{amps} \\
& B=12 \mathrm{amps} \\
& C=9 \mathrm{amps}
\end{aligned}
\]
2. Find Average \(10+12+9=31\) 31
\(\frac{3}{3}=10.33\)

1 max \(=12\)
lavg \(=10.33\)
3. Apply formula \(12-10.33=1.67\)
\(\frac{1.67}{12}=.139 \times 100=13.9 \%\) unbalance

If the only load on the Current Transformer is a DE Current Monitor, its VA rating (approx. 0.15 VA) is small compared to the Current Transformer rating and can be neglected. This means that the resistance of the wiring can be 80 milliohms max. for the 2 VA units and 200 milliohms max for the 5 V A unit.
\begin{tabular}{ccc}
Gauge & Ohms per 1000' & Milliohms per foot \\
AWG 14 & 2.5 & 2.5 \\
AWG 16 & 4.0 & 4.0 \\
AWG 18 & 6.4 & 6.4 \\
AWG 20 & 10.0 & 10.0
\end{tabular}

Example:
For a 2 VA Current Transformer, the length of AWG 16 wire would be:
\[
\frac{80 \text { milliohms }}{4.0 \text { milliohms } / \mathrm{ft}}=20^{\prime}
\]

Because we are dealing with a pair of wires, the maximum distance from the Current Transformer to the Current Monitor can be only 10 ft .

As we can see, it is important to keep the wire length to minimum, use heavy wire, and keep all connections clean and tight.

\section*{ALTERNATING RELAYS}

ATC-Diversified Electronics offers a wide variety of models for various staging requirements. The different models available are: Duplexors, Triplexors, Quadraplexors, Special Function, and Expandable Alternating Relays.
The Alternating Relay is used in multiple load installations to assure equal run time on all loads. They also allow for the addition of more capacity in the event of excess load requirements. The Alternating Relay provides equal run time on two or more loads by alternating the sequence in which the loads are allowed to start up. In each case, the alternating action is initiated each time the control switch across designated terminal opens. The control switch may be a float, a thermostat, a pressure switch, or a timer contact.

\section*{ALTERNATING CONTROLLERS}

The ARM Series, Alternating Controllers, are used in multiple load installations to assure equal run time on all loads. They also allow for the addition of more capacity in the event of excess load requirements. The Alternating Controllers provide equal run time on two or more loads by alternating the sequence in which the loads are allowed to start up.
All ARM models feature intrinsically safe inputs and logic that allows the outputs to operate even if one of the inputs fails to open or close. For example: if the off switch fails to close, the lead load will not energize until both the lead and the lag switches close. An inrush delay on all models reduces line sags by preventing multiple loads from energizing simultaneously.

\section*{FEATURE MATRIX}
\begin{tabular}{|l|ll|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & & & \\
\hline
\end{tabular}

STEP I
STEP

STEP 3

\section*{Duplexor}

\section*{DIMENSIONS (INCHES)}

\section*{WIRING}

D-DPDT

C-DPDT (cross wired)

E-DPDT (cross wired)

The Duplexor is used in control panels where two loads are required to alternate to provide equal run time on the loads. The alternating action is initiated by a control switch, which is common with one side of the control voltage. The output contacts will change states each time the control switch is opened, thus alternating the two loads. The LED indicators show the position of the output relay.
The ARA Series is the standard Duplexor providing automatic alternating sequence. The ARB has the automatic sequencing feature plus the option of locking it into one sequence. A three position switch permits the field selection of normal duplexing action, locking in the A-B sequence, or B-A sequence.

\section*{SPECIFICATIONS}

CONTROL VOLTAGE \(24,120 \mathrm{VAC} / \mathrm{DC}, 208,240,50 / 60 \mathrm{~Hz}\),
\begin{tabular}{ll}
\hline \begin{tabular}{l}
CONTROL SWITCH \\
CURRENT
\end{tabular} & 1 mA \\
\hline POWER REQUIRED & 3 VA (Approximately) \\
\hline DUTY CYCLE & Continuous \\
\hline LIFE EXPECTANCY & Mechanical \(10,000,000\) Operations (Minimum) \\
\cline { 2 - 2 } & Electrical 100,000 Operations @ Rated Load \\
\hline INDICATORS & LED Shows Output Position \\
\hline TEMPERATURES & Operate \(\quad-4^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage \(\quad-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline CONTACT RATING & 10 Amps @ 240 VAC, Resistive \(1 / 8 \mathrm{hp} @ 120 \mathrm{VAC}\) \\
& \(1 / 4\) hp @ 240 VAC Inductive, 360 VA @ 240 VAC, \\
\hline Inductive \\
\hline ENCLOSURE & "A" Lexan® Dust Cover \\
\hline TERMINATIONS & Industrial Plug-in \\
\hline WEIGHT & 4.5 oz.
\end{tabular}

MODEL NUMBER
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MODEL NUMBER & AR & & & A & & A \\
\hline TYPE OF ALTERNATING RELAY Standard Duplexor & & A & & \multicolumn{3}{|c|}{TYPE OF ALTERNATING RELAY} \\
\hline Special Function Duplexor & & B & & & & \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
CONTROL VOLTAGE \\
24 VAC/DC
\end{tabular}} \\
\hline 120 VAC/DC & & & 120 & & & \\
\hline 208 VAC & & & 208 & & & \\
\hline 240 VAC & & & 240 & & & \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
TYPE OF VOLTAGE \\
VAC or VAC/DC
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{CONTACT CONFIGURATION SPDT} \\
\hline DPDT (Cross Wired) & & & & & C & \\
\hline DPDT & & & & & D & \\
\hline DPDT (Cross Wired) & & & & & E & \\
\hline ENCLOSURE STYLE & & & & & & A \\
\hline
\end{tabular}

The ARC/ARD Series is a duplexor that detects input of float switch inputs and determines outputs to turn on with line voltage. As the lag and lead switches open, the loads remain energized. When all switches open both loads de-energize simultaneously and the lead load alternates. The ARD series has a 3 position selector switch to lock it into normal duplexing action, 1-2 sequence or 2-1 sequence.

\section*{Sequence On-Simultaneous Off (SOSO)}

\section*{SPECIFICATIONS}
\begin{tabular}{ll}
CONTROL VOLTAGE & 120 VAC \(+10 /-20 \%\) \\
\hline POWER REQUIRED & Less than 3 VAC \\
\hline DUTY CYCLE & Continuous \\
\hline LIFE EXPECTANCY & Mechanical \(10,000,000\) Operations (Minimum) \\
\cline { 2 - 2 } & Electrical 100,000 Operations @ Rated Load \\
\hline INDICATORS & LED Shows Output Position \\
\hline TEMPERATURES & Operate \(\quad 32\) to \(149^{\circ} \mathrm{F}\left(0\right.\) to \(\left.65^{\circ} \mathrm{C}\right)\) \\
\cline { 2 - 2 } RATING & Storage \(\quad-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline CONTACT RATING & 5 Amps Resistive @ 120 VAC (Single Output) \\
& \(1 / 6\) hp @ 120 VAC (Single Output) \\
& 10 Amps Res. @ 120 VAC (Combined Output) \\
\hline ENCLOSURE & "A" Lexan® Dust Cover \\
\hline TERMINATIONS & Industrial Plug-in \\
\hline WEIGHT & 6.4 oz.
\end{tabular}

\section*{DIMENSIONS (INCHES)}

MODEL NUMBER
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MODEL NUMBER A & & & & & A & \\
\hline \begin{tabular}{l}
UL STATUS \\
UL Recognized
\end{tabular} & UL STATUS & & & & & \\
\hline UL Listed (0T08 socket) & U & & & & & \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
TYPE OF ALTERNATING RELAY \\
Standard Duplexor
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Special Function Duplexor} & D & & & & \\
\hline 120 VAC & \multicolumn{5}{|c|}{CONTROL VOLTAGE} & \\
\hline \multicolumn{7}{|l|}{TYPE OF VOLTAGE} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
CONTACT CONFIGURATION \\
SPDT Two Line Voltage Outputs \\
(Crosswired)
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{ENCLOSURE STYLE} & A \\
\hline
\end{tabular}

ORDER
AUC120AAU and AUD120AAU which includes
socket OT08 as UL listed Unit

\section*{ARA Series}

ALTERNATING RELAYS \& CONTROLLERS

\section*{Triplexor}

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline CONTROL VOLTAGE & \(24,120 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}\) \\
\hline CONTROL SWITCH CURRENT & 2 mA \\
\hline POWER REQUIRED & 3 VA (Approximately) \\
\hline DUTY CYCLE & Continuous \\
\hline OUTPUT RATING & \begin{tabular}{l}
Triplexor 24 V 5 A Resistive, \(25 \mathrm{VA} @ 24 \mathrm{VAC}\) -120V (3) 5 Amp Resistive, \(1 / 6 \mathrm{hp}\), 211 VA @ 120 VAC, Inductive Externally Switched to Terminal \#2 \\
Quadraplexor (4) 5 Amp Resistive, \(1 / 6 \mathrm{hp}, 211 \mathrm{VA}\) @ 120 VAC, Inductive Externally Switched to terminal \#2
\end{tabular} \\
\hline LIFE EXPECTANCY & Mechanical 10,000,000 Operations (Minimum) \\
\hline & Electrical 100,000 Operations @ Rated Load \\
\hline INDICATORS & LED's Show Condition of Outputs \\
\hline TEMPERATURES & Operate \(\quad-4^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage \(\quad-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Style "E" Lexan® Surface Mounted \\
\hline TERMINATIONS & (12) \#8-32 Screw Terminals \\
\hline WEIGHT & 12 to 14 oz . \\
\hline \multicolumn{2}{|l|}{NOTE: For Analog signal inputs, ATC offers a duplexing pump control the ATC-Digitec 3800 Panel Meter.} \\
\hline
\end{tabular}

The Triplexor and Quadraplexor Alternating Relays are designed for use in MULTIPLE LOAD installations that are required to alternate in sequence while assuring equal run time on all loads. They also allow for additional loads to run in the event of excess load requirements.

The Triplexor and Quadraplexor have the option of automatic alterations or external clocking alterations. When the factory installed jumper is in place the alternating action is initiated by a control switch, which is common with one side of the control voltage. When the jumper is removed the alternating action is initiated by an isolated normally open switch.

\section*{ARA-XXX-AFE ALTERNATING ACTION}

TRIPLEXOR: For automatic alterations a factory-installed jumper is in place between terminals 3 and 4. The alternating action is accomplished when the control switch between terminals 2 and 4 opens.

For external clocking alterations, remove the factory-installed jumper between terminals 3 and 4 and place an isolated normally open switch between terminals 2 and 3 . The alternating action will occur each time this isolated switch is closed and then re-opened.

\section*{ARA-XXX-AGE}

QUADRAPLEXOR: For automatic alterations, a factory installed jumper is in place between terminals 11 and 12. The alternating action is accomplished when the control switch between terminals 2 and 3 opens.

For external clocking alterations, remove the factory-installed jumper between terminals 11 and 12 and place an isolated normally open switch between terminals 2 and 12 . The alternating action will occur each time this isolated switch is closed and then re-opened.

In the event of a power failure the Alternating Relays will return to their quiescent state and continue sequencing loads on one-at-a-time.

\section*{DIMENSIONS}
(INCHES)

\section*{WIRING}

\section*{MODEL NUMBER}
\begin{tabular}{|c|c|c|c|c|c|}
\hline MODEL NUMBER & ARA & & A & & E \\
\hline \multicolumn{6}{|l|}{CONTROL VOLTAGE} \\
\hline 24 V Triplexor & & 24 & & & \\
\hline 120 V Triplexor & & 120 & & & \\
\hline 120 V Quadraplexor & & 120 & & & \\
\hline \multicolumn{4}{|l|}{Triplexor} & F & \\
\hline \multicolumn{4}{|l|}{Quadraplexor (120 V only)} & G & \\
\hline
\end{tabular}

The ARA Series Triplexor and Quadraplexor are UL Listed under UL File Number E55826.

The Expandable Alternating Relays are designed for use in multiple load installations that are required to alternate in sequence and have the ability to accept an additional load installation in the future.
ARA-120-AME: The ARA-120-AME is a Duplexor/Triplexor Alternating Relay. With the selector switch in position A , this alternating relay will duplex the loads on terminals 7 and 9 . With the switch in position B, the Alternating Relay will triplex the three loads on terminals 7, 9 and 11.

For automatic alterations, a factory-installed jumper is in place between terminals 3 and 4 . The alternating action is accomplished when the control switch between terminals 2 and 4 opens.
For external clocking alterations, remove the factory installed jumper between terminals 3 and 4 and place an isolated normally open switch between terminals 2 and 3 . The alternating action will occur each time this isolated switch is closed and then re-opened.
ARA-120-ANE: The ARA-120-ANE is a Triplexor/Quadraplexor
Alternating Relay. With the selector switch in position A, the Alternating Relay will triplex between the loads on terminals 7, 8 and 9 . With the switch in position B, the Alternating relay will quadraplex the loads on terminals \(7,8,9\) and 10.
For automatic alterations, a factory installed jumper is in place between terminals 11 and 12. The alternating action is accomplished when the control switch between terminals 2 and 3 opens. For external clocking alterations, remove the factory installed jumper between terminals 11 and 12 and place an isolated normally open switch between terminals 2 and 12. The alternating action will occur each time this isolated switch is closed and then re-opened.
In the event of a power failure the Alternating Relays will return to their quiescent state and continue sequencing loads on one-at-a-time.

\section*{SPECIFICATIONS}

CONTROL VOLTAGE \(120 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}\)
CONTROL SWITCH 2 mA

\section*{CURRENT}
POWER REQUIRED 3 VA (Approximately)
DUTY CYCLE Continuous

OUTPUT RATING Triplexor (3) 5 Amp Resistive, \(1 / 6 \mathrm{hp}, 211 \mathrm{VA}\) @ 120 VAC, Inductive Externally Switched to terminal \#2 Quadraplexor (4) 5 Amp Resistive, \(1 / 6 \mathrm{hp}, 211\) VA @ 120 VAC, Inductive Externally Switched to terminal \#2
\begin{tabular}{ll}
\hline LIFE EXPECTANCY & \multicolumn{2}{l}{ Mechanical \(10,000,000\) Operations (Minimum) } \\
\cline { 2 - 3 } & Electrical 100,000 Operations @ Rated Load \\
\hline INDICATORS & LED's Show Condition of Outputs \\
\hline TEMPERATURES & Operate \\
\cline { 2 - 2 } RATING & \(-4^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline Storage & \(-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline TERCLOSURE & Style "E" Lexan® Surface Mounted \\
\hline WEIGHT & (12) \#8-32 Screw Terminals \\
\hline
\end{tabular}

\section*{Expandable Alternating Relays}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline MODEL NUMBER & DESCRIPTION \\
\hline ARA-120-AME & Duplexor/Triplexor \\
\hline ARA-120-ANE & Triplexor/Quadraplexor \\
\hline
\end{tabular}

\section*{DIMENSIONS (INCHES)}

\section*{WIRING}

\section*{OPERATION}

The ARA-120-AHE is a special function TRIPLEXOR designed for three load installations. This model has a field selection switch that is used to omit one of the three loads for general or emergency maintenance while duplexing the remaining two loads. The ARA-120-AHE has the option of alternating on each load cycle or by external clocking. This alternating relay also allows for additional loads to run in the event of excess load requirements.

The alternating action is initiated by the control switch between terminals 2 and 4 when the factory installed jumper is in place between terminals 3 and 4 .
The alternating action may be initiated externally by removing the factory installed jumper between terminals 3 and 4 and placing an isolated normally open switch between terminals 2 and 3 . An alternating action will occur each time this isolated switch is closed and then re-opened.
The selection switch has the following positions:
Normal - Normal operation as Triplexor
Omit 1 - Omit load \#1 Duplex loads 2 and 3
Omit 2 - Omit load \#2 Duplex loads 1 and 3
Omit 3 - Omit load \#3 Duplex loads 1 and 2
In the event of a power failure, the Alternating Relay will return to its quiescent state and continue sequencing loads on one-at-a-time.

NOTE: When the "omit load" option is selected, full potential will appear on the output terminal of the omitted load when the lag switch between terminals 2 and 5 closes. It is recommended that the \(\mathrm{H}-\mathrm{O}-\mathrm{A}\) switch be placed in the "off" position for the omitted load.

\section*{WIRING}

INCLUDES
"LOAD OMIT" SWITCH

\section*{Special Function Alternating Relay}

ORDERING INFORMATION
\begin{tabular}{|c|c|}
\hline MODEL NUMBER & DESCRIPTION \\
\hline ARA-120-AHE & Special Function Alternating Relay \\
\hline
\end{tabular}

\section*{OPERATION}

The ARA-120-AJE is a special function TRIPLEXOR designed for three load installations. This model has a field selection switch that is used to lock the Alternating Relay into a desired sequence. The ARA-120-AJE has the option of automatically alternating on each load cycle or by external clocking. This Alternating Relay also allows for additional loads to run in the event of excess load requirements.
The alternating action is initiated by the control switch between terminals 2 and 4 when the factory installed jumper is in place between terminals 3 and 4 . The alternating action may be initiated externally by removing the factory installed jumper between terminals 3 and 4 and placing an isolated normally open switch between terminals 2 and 3 . The alternating action will occur each time this isolated switch is closed and then re-opened.
A four position ROTARY SWITCH has been incorporated to permit field selection of the sequence that is to be maintained. The selection switch has the following positions:

Normal - Normal operation as a Triplexor
Lock 1 - Locks in sequence 1-2-3; No alternation will occur while in this position.
Lock 2 - Locks in sequence 2-3-1; No alternation will occur while in this position.

Lock 3 - Locks in sequence 3-1-2; No alternation will occur while in this position.
In the event of a power failure, the alternating relay will return to its quiescent state and continue sequencing loads on one-at-a-time.

\section*{SPECIFICATIONS}

CONTROL VOLTAGE \(120 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}\)
CONTROL SWITCH 2 mA
CURRENT
POWER REQUIRED 3 VA (Approximately)
DUTY CYCLE Continuous
OUTPUT RATING Triplexor (3) 5 Amp Resistive, \(1 / 6 \mathrm{hp}, 211 \mathrm{VA}\) @ 120 VAC, Inductive Externally Switched to terminal \#2
\begin{tabular}{lll}
\hline LIFE EXPECTANCY & Mechanical & \(10,000,000\) Operations (Minimum) \\
\cline { 2 - 3 } & Electrical & 100,000 Operations @ Rated Load \\
\hline INDICATORS & \multicolumn{2}{l}{ LED's Show Condition of Outputs } \\
\hline TEMPERATURES & Operate & \(-4^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Style "E" Lexan \({ }^{\circledR}\) Surface Mounted \\
\hline TERMINATIONS & (12) \#8-32 Screw Terminals \\
\hline WEIGHT & 17 oz.
\end{tabular}

Triplexor Alternating Relay

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline MODEL NUMBER & DESCRIPTION \\
\hline ARA-120-AJE & Alternating Relay \\
\hline
\end{tabular}

\section*{DIMENSIONS (INCHES)}

\section*{WIRING}

The ARM Series Alternating Relay is a microprocessor-based controller designed for use in dual load installations to assure equal run time on each load. LED indicators show the status of the unit's five intrinsically safe control switch inputs, one alarm, and two load outputs. H-O-A switches, a lead select switch, and a test/clear button are provided for manual control. The ARM Series reduces the number of components required for this application by combining many functions into one unit.

TWO PUMP SEQUENCING: Evenly distributes run time by automatically alternating lead and lag load designations when the off control switch input opens.
UL913 INTRINSICALLY SAFE: Control switch inputs are low voltage/ low current and are electronically isolated from the control voltage and load alarm contacts.

H-O-A Switches: Hand-Off-Automatic switches allow for manual operation.

LEAD SELECT SWITCH: Disables the automatic sequencing function and allows loads to be locked into the 2-1 or 1-2 sequence.
CONTROL SWITCH FAULT DETECTION: Unit detects open and shorted control switch failures.

TEST/CLEAR SWITCH: Verifies function and resets the control switch fault detection algorithm.
ALARM OUTPUT: Alarm contacts close when a control switch fails or the system's capacity is exceeded.

INRUSH CURRENT DELAY: Reduces line sags by preventing both loads from energizing simultaneously.
VERSATILE MOUNTING: Two (2) mounting configurations are available. The standard surface mount has top access to controls and indicators and is intended for back panel mounting. The panel mount option is intended for front panel or door cutout access to controls and indicators.

\section*{ORDERING INFORMATION}
\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c}
MODEL \\
NUMBER
\end{tabular} & \begin{tabular}{c}
CONTROL \\
VOLTAGE
\end{tabular} & MOUNTING & COMMENTS \\
\hline ARM-XXX-AFE* & 24 or 120 VAC & Surface & Standard \\
\hline ARM-XXX-AFEP* & 24 or 120 VAC & Panel & Standard \\
\hline ARM-2003 & 120 VAC & Surface & \begin{tabular}{c}
Special: w/o \\
H-0-A switches
\end{tabular} \\
\hline ARM-2010 & 120 VAC & Panel & \begin{tabular}{c}
Special: w/o \\
H-0-A switches
\end{tabular} \\
\hline ARM-2011 & 120 VAC & Surface & \begin{tabular}{c}
Special: w/o \\
Control switch \\
failure feature
\end{tabular} \\
\hline
\end{tabular}
*Replace XXX with desire control voltage \((24,120)\)
The ARM Series is UL Listed under UL File Number E151578.

FOUR CONTROL SWITCHING: Do not remove factory-installed jumper between terminals 2 and 3 . The control switches connected to terminals 3 through 6 are labeled OFF (CS2), LEAD (CS3), LAG (CS4) and ALARM (CS5). Under normal operation the lead load energizes when the off and lead control switches close in order. The lag load energizes when the lag closes and the alarm load energizes when the alarm switch closes. When all four switches reopen in the proper order all outputs are de-energized and the lead/lag output designations reverse.

FIVE CONTROL SWITCHING: Remove factory installed jumper between terminals 2 and 3. After the jumper has been removed, the additional control switch is connected to terminal 2. The extra switch functions as an AUXILIARY OFF (CS1) switch. It is used to prevent loads from running continuously if the primary OFF (CS2) switch fails to open properly.
FAULT DETECTION ALGORITHM: If any of the control switches open or close out of order, the alarm output energizes and a fault detection algorithm is used to identify the faulty switch. The faulty switch is then ignored and the OFF, LEAD, and LAG control switch designations are altered to maintain safe operation.

*Greenlee punch \#60071 or equivalent
1. To maintain intrinsic safety, connect the Controller's Earth Ground Terminal 8 to the earth ground of the AC Power Supply feeder. The resistance between the Controller's Earth Ground Terminal and Earth Ground shall be less than 1 ohm.
2. Maximum distance between Controller and switch contact is 1000 feet.
3. All intrinsically safe wiring shall be separated from non-intrinsically safe wiring. Refer to article 504 of the National Electrical Code ANSI/NFPA 70 on procedures for intrinsically safe wiring.
4. Switch contact shall be any non-energy storing or generating mechanical switch type device containing no capacitance or inductance.
5. Connections to terminals \(5,6,9,10,11\), and 12 are optional. If the Aux. Off switch is omitted, terminals \(2 \& 3\) must be jumpered.

These TRIPLEX and QUADRAPLEX CONTROLLERS are available with either Sequence-On-Simultaneous-Off (SOSO) or First-On-First-Off (FOFO) output logic. The special function models are differentiated by a rotary switch that allows any output to be locked as the lead load or any one load to be omitted while sequencing only the remaining loads. In addition to load omission and lead selection, the expandable model can be set for 2,3 , or 4 load operation with either SOSO or FOFO logic.

All models feature INTRINSICALLY SAFE INPUTS and logic that allows the outputs to operate properly even if one of the inputs fails to open or close. For example: if the off switch fails to close, the lead load will not energize until both the lead and the lag switches close. An inrush delay on all models reduces line sags by preventing multiple loads from energizing simultaneously.

\section*{Alternating Controllers}
- 3 and 4 Load Output Models
- Intrinsically Safe Inputs

\section*{SPECIFICATIONS}

CONTROL VOLTAGE 24 or \(120 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}\)
SWITCH VOLTAGE 5.1 Volts open circuit

SWITCH CURRENT \(10 \mu \mathrm{Amps}\) short circuit
POWER REQUIRED 2.5 VA
SENSITIVITY 100 k ohm
\begin{tabular}{|c|c|c|}
\hline ISOLATION & \multicolumn{2}{|l|}{2500V Input to Output} \\
\hline DUTY CYCLE & \multicolumn{2}{|l|}{Continuous} \\
\hline \multirow[t]{4}{*}{RESPONSE} & Power Up & \(<1\) SEC \\
\hline & Operate & \(<25 \mathrm{mSEC}\) (switch closure) \\
\hline & Inrush & 5 SEC \\
\hline & Release & < 150 mSEC \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline CONTACT & All channels, SPST-N.0., 5 Amps per channel \\
RATING & @ 24 or 120 VAC, Resistive; 278 VA, Inductive
\end{tabular}
\begin{tabular}{lll}
LED INDICATORS & \multicolumn{2}{l}{ ON when corresponding output is ON } \\
\hline LIFE EXPECTANCY & Mechanical & 20 Million Operations \\
\cline { 2 - 3 } & Electrical & 50,000 Operations \\
\hline TEMPERATURE & Operate & \(-4^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\cline { 2 - 3 } RATING & Storage & \(-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline TERMINATIONS & \begin{tabular}{l}
(12) \#8-32 Screw terminals with pressure \\
clamps
\end{tabular} \\
\hline ENCLOSURE & Style "E" Surface mount \\
\hline WEIGHT & 16 oz.
\end{tabular}

\section*{DIMENSIONS (INCHES)}

MODEL NUMBER
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MODEL NUMBER} & ARM & & & E & \\
\hline \multicolumn{7}{|l|}{CONTROL VOLTAGE} \\
\hline \multicolumn{3}{|l|}{24 VAC} & 24A & & & \\
\hline \multicolumn{3}{|l|}{120 VAC} & 120A & & & \\
\hline \multirow[t]{2}{*}{NO. OF LOADS} & \multirow[t]{2}{*}{OUTPUT LOGIC} & \multicolumn{2}{|l|}{SPECIAL} & & & \\
\hline & & \multicolumn{2}{|l|}{FUNCTIONS} & & & \\
\hline 3 & SOSO & \multicolumn{2}{|l|}{none} & A & & \\
\hline 3 & FOFO & \multicolumn{2}{|l|}{none} & B & & \\
\hline 3 & SOSO & \multicolumn{2}{|l|}{Omit/Lead Select} & C & & \\
\hline 3 & FOFO & \multicolumn{2}{|l|}{Omit/Lead Select} & D & & \\
\hline 4 & SOSO & \multicolumn{2}{|l|}{none} & G & & \\
\hline 4 & FOFO & \multicolumn{2}{|l|}{none} & H & & \\
\hline \multicolumn{4}{|l|}{ENCLOSURE STYLE} & & E & \\
\hline \multicolumn{6}{|l|}{MOUNT} & \\
\hline \multicolumn{6}{|l|}{No Suffix Surface Mount} & \\
\hline \multicolumn{2}{|l|}{P Suffix Panel Mount} & & & & & P \\
\hline
\end{tabular}

The ARM Series is UL Listed under UL File Number E151578.

\section*{OPERATION TRIPLEX CONTROLLERS}

Intrinsically safe equipment and wiring is equipment and wiring which is incapable of releasing sufficient electrical or thermal energy under normal or abnormal conditions to cause ignition of a specific hazardous atmospheric mixture in its most ignitable concentration. Intrinsically safe terminations and wiring may be brought into any hazardous location of any group classification for which it is accepted without requiring explosion-proof housing or other means of protection.
Hazardous locations are classified by the National Electrical Code according to the level of hazard that may exist in the area. A hazardous location is designated by its class, group and division. The class and group specify the specific hazardous substances that may exist in the classified location.
- Class I, Groups A through D - Flammable gasses
- Class II, Groups E through G - Combustible dusts
- Class III, Easily ignitable fibers or flyings

The division indicates the conditions under which the hazardous substance may be present.
- Division I-Hazardous substances exist continuously or intermittently under normal operating conditions.
- Division II - Hazardous substances exist within closed containers or systems from which they can escape only in case of accidental rupture or breakdown.

\section*{WIRING}

\section*{FIELD SELECTION SWITCH}
\begin{tabular}{ll}
POS. & FUNCTION \\
\hline 0 & NORMAL \\
\hline 1 & 123 \\
\hline 2 & 231 \\
\hline 3 & 312 \\
\hline 4 & OMIT L1 \\
\hline 5 & OMIT L2 \\
\hline 6 & OMIT L3 \\
\hline 7 & TEST
\end{tabular}

\section*{OPERATION QUADRAPLEX CONTROLLERS}

The ARM-120-AGE and ARM-120-AHE Quadraplex Controllers have five switch inputs and four load outputs. The inputs are designated off, lead, lag, 2nd lag, and 3rd lag. With the off switch closed, the loads energize in sequence upon closure of the lead, lag, 2nd lag, and 3rd lag inputs. If the off switch fails to close, the lead load will not energize until both the lead and lag switches close. De-energization of the loads depends on the output logic of the selected controller.

ARM-120-AGE (SOSO): The ARM-120-AGE has sequence-on simultaneous off output logic. As the 3rd lag, 2nd lag, lag and lead switches open, the loads remain energized. When the off switch opens, all four loads de-energize simultaneously. If any switch fails to open, the loads still de-energize when the off switch opens. The lead advances one position each time the loads de-energize.

ARM-120-AHE (FOFO): The ARM-120-AHE has first-on-first-off output logic. When the 3rd lag switch opens, all four loads remain energized. The 2nd lag switch opens next, and the lead load de-energizes. When the lag switch opens, the lag load de-energizes. Next, the lead switch opens, and the 2nd lag load de-energizes. Finally, the off switch opens, and the 3rd lag load de-energizes. At the end of each cycle the lead advances one position for each load energized during the cycle. For example: if loads one and two cycle on and off, the lead will advance two positions. Load three will be the lead load for the next cycle.

STEP 1

This example continues from SOSO operation step four. With all float switches closed, all loads are energized.

\section*{STEP 2}

As the fluid level falls, the 2nd lag switch opens. All loads remain energized. Each float switch in descending order acts as the OFF switch for the preceding float.

STEP 3

When the lag switch opens, load 1 deenergizes. Loads 2 and 3 remain energized.

STEP 4

STEP 5

When the OFF switch opens, load 3 deenergizes and the lead advances three positions. At the end of each cycle the lead advances one position for each load energized during the cycle. This particular example reverts back to SOSO OPERATION 1-4 wherein load 1 would again be the lead load.

STEP 1

This example illustrates the normal operation of the Triplex Controller in a pump down application with four normally open dry float switches. The switches are designated off, lead, lag, and 2nd lag. The example begins with all switches open and all loads de-energized.

\section*{STEP 2}

As the fluid level rises, the OFF switch closes, no loads are energized.

\section*{STEP 3}

If the fluid level continues to rise, the lead switch closes and load 1 energizes.

\section*{STEP 4}

STEP 5

STEP 6

When the fluid level falls and each float switch opens, the loads remain energized so long as the OFF switch remains closed. No external auxiliary contacts are required to accomplish this latch feature.
As the fluid level continues to rise each successive float switch closure sequentially energizes a corresponding load.

When the fluid level falls below the OFF switch, all loads simultaneously de-energize, and the alternating logic advances one position. The next rise and fall in fluid level and successive operation of load switches will result in the SOSO load operation as follows: 2-3-1, 3-1-2, and back to 1-2-3 as in Step 1.

\section*{INTRINSICALLY SAFE SINGLE \& MULTIPLE CHANNEL INPUTS}

Hazardous locations are classified by the National Electrical Code according to the level of hazard that may exist in the area. A hazardous location is designated by its class, group and division.

\section*{CLASS I}

Locations in which flammable gases or vapors may be present in the air in quantities sufficient to produce explosive or ignitable mixtures.

\section*{GROUP A}

Atmospheres containing acetylene.

\section*{GROUP B}

Atmospheres containing hydrogen, gases or vapors of equivalent hazard, such as manufactured gas.

\section*{GROUP C}

Atmospheres containing ethyl-ether vapors, ethylene or cyclopropane.

\section*{GROUP D}

Atmospheres containing gasoline, hexane, naphtha, benzine, butane, propane, alcohol, acetone, benzol, lacquer solvent vapors or natural gas.

\section*{DIVISION I}

Locations in which hazardous concentrations in the air exist continuously, intermittently or periodically under normal operating conditions.

Class and group specify the type of hazardous substance that may exist in the classified location. The division indicates the conditions under which the hazardous substance may be present.

\section*{CLASS III}

Locations which are hazardous because of the presence of easily ignitable fibers or flyings, but in which such fibers or flyings are not likely to be in suspension in air in quantities sufficient to product ignitable mixtures.

\section*{DIVISION II}

Locations in which hazardous concentrations are handled, processed or used but are normally confined within closed containers or closed systems from which they can escape only in case of accidental rupture or breakdown.

The ATC Diversified Electronics series of Isolated Switches have been tested and approved for

Process Control Equipment for Hazardous Locations 7M26 UL913
listing under Underwriters Laboratories (UL) UL913 Intrinsically Safe Apparatus and Associated Apparatus. The input(s) to these switches have been approved for use in all classes, groups and divisions of hazardous locations.

\section*{OPERATION}

The ISO Series single channel devices are used to provide a safe and reliable means of controlling loads from hazardous locations without releasing sufficient energy, under normal or abnormal conditions, to cause ignition of a flammable or combustible atmospheric mixture while in its most easily ignited concentration. An isolated output turns on when the control switch input from the hazardous location is closed. When the control switch input opens, the isolated output turns off. The Style A single channel plug-in devices come equipped with integral spring mating clips and socket (PF083A) which secure the device to make this unit the only UL913 Intrinsically Safe plug-in associated apparatus available on the market today. The Style N, surface mounted enclosure is sealed with a high quality epoxy resin material and has five (5) \#8-32 screw terminals.

Single Channel Isolated Switch

DIMENSIONS
(INCHES)

SPECIFICATIONS
\begin{tabular}{lll}
CONTROL VOLTAGE & 24 or 120 VAC \(\pm 10 \%, 50 / 60 \mathrm{~Hz}\) \\
\hline CONTROL SWITCH & Open Circuit Voltage & 16 VDC \\
\cline { 2 - 3 } & Short Circuit Current & \(200 \mu \mathrm{Amps}\) \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline RESPONSE & Operate & 6 mSEC (Approx.) \\
\cline { 2 - 3 } & Release & 2.5 mSEC (Approx.) \\
\hline POWER REQUIRED & 1.5 VA \\
\hline DUTY CYCLE & Continuous \\
\hline CONTACT & SPST-N.0., 5 amps @ 24 \\
RATING & or 120 VAC, Resistive; 278 VA, Inductive \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline SENSITIVITY & \multicolumn{1}{l}{100 k ohm } \\
\hline ISOLATION & 2500 Volts, Input to Output \\
\hline LIFE EXPECTANCY & Mechanical \(\quad 20\) Million Operations \\
\cline { 2 - 3 } & Electrical \(\quad 50,000\) Operations @ Rated Load \\
\hline INDICATORS & On When Output is On \\
\hline TEMPERATURE & Operate \(\quad-4^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage \(\quad-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Style "A" and "N" \\
\hline TERMINATIONS & (12) \#8-32 Screw terminals \\
\hline WEIGHT & 20 oz.
\end{tabular}
\begin{tabular}{c|c|c|}
\hline \multicolumn{3}{|c|}{ ORDERING INFORMATION } \\
\hline \begin{tabular}{c}
MODEL \\
NUMBER
\end{tabular} & \begin{tabular}{c}
CONTROL \\
VOLTAGE
\end{tabular} & \begin{tabular}{c}
ENCLOSURE \\
STYLE
\end{tabular} \\
\hline ISO-24-AFA & 24 VAC & A \\
\hline ISO-120-AFA & 120 VAC & A \\
\hline ISO-24-AFN & 24 VAC & N \\
\hline ISO-120-AFN & 120 VAC & N \\
\hline
\end{tabular}

Style "A" Socket Included (PF083A) with clips

\section*{OPERATION}

The ISO/ISL Series multiple channel devices are used to provide a safe and reliable means of controlling loads from hazardous locations without releasing sufficient energy under normal or abnormal conditions to cause ignition of a flammable or combustible atmospheric mixture while in its most easily ignited concentration. An isolated output turns on when the corresponding control switch input from the hazardous location is activated. When using normally closed control switch inputs, a jumper should be installed between terminals 1 and 2. Normally open control switch inputs do not require the optional jumper. When the non-latching ISO Series control switch input is activated, its corresponding output turns on. When the control switch input is deactivated, its output turns off. When the latching ISL Series control switch input 2, 3 or 4 is activated, its corresponding output turns on. When control switch 2, 3 or 4 is deactivated, its corresponding output remains latched on as long as control switch input 1 is activated; otherwise it turns off immediately. Control switch input 1 also controls output 1 just as in the non-latching ISO Series.

\section*{DIMENSIONS (INCHES)}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
MODEL \\
NUMBER
\end{tabular} & \begin{tabular}{c}
CONTROL \\
VOLTAGE
\end{tabular} & CHANNELS \\
\hline ISL-24-AAE & 24 VAC & 2 \\
\hline ISL-24-ABE & 24 VAC & 3 \\
\hline ISL-24-ACE & 24 VAC & 4 \\
\hline ISL-120-AAE & 120 VAC & 2 \\
\hline ISL-120-ABE & 120 VAC & 3 \\
\hline ISL-120-ACE & 120 VAC & 4 \\
\hline ISO-24-AAE & 24 VAC & 2 \\
\hline ISO-24-ABE & 24 VAC & 3 \\
\hline ISO-24-ACE & 24 VAC & 4 \\
\hline ISO-120-AAE & 120 VAC & 2 \\
\hline ISO-120-ABE & 120 VAC & 3 \\
\hline ISO-120-ACE & 120 VAC & 4 \\
\hline
\end{tabular}

NOTES:

2. All intrinsically safe wiring shall be separated from non-intrinsically safe wiring. Refer to article 504 of the intrinsically safe wiring. mechanical switch type device containing no capacitance or inductance.
4. Unit must be installed with DE socket P/N PF083A.

CONTROL DRAWING 193

1. Maximum distance between unit and switch is 1000 feet.
2. All intrinsically safe wiring shall be separated from non-intrinsically safe wiring. Refer to article 504 of the National Electrical Code ANSI/NFPA 70 for installation of intrinsically safe wiring.
3. Switch contact shall be any non-energy storing or generating mechanical switch type device containing no capacitance or inductance.
4. Wiring to terminals \(5,6,11\) and 12 is omitted for models with the suffix AAE.
5. Wiring to terminals 6 and 12 is omitted for models with the suffix \(A B E\).

The AC 2020 Compressor Protector provides multimode time delays, reset selections and a memory capability which indicates using LED's, the last fault condition. This offers not only protection for the compressor in adverse electrical conditions but also a method to readily determine the type of fault occurrence.

\section*{3-Phase Compressor Protector}
- Automatic Voltage Ranging
- Universal Control Voltage
- Condition/Fault Indicators
- Automatic/Manual Reset
- Last Fault Memory
- Delay-On-Make
- Delay-On-Break
- Auxiliary Contacts
- Easy Installation

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline MODEL & DESCRIPTION \\
NUMBER
\end{tabular}\(\quad\).

*See instruction Manual for more information.

This family of HVAC controls provides short cycle protection by locking out the compressor for a period of time after a voltage or thermostat interruption. Subsequent interruptions will not increase the delay period. Since the delay begins when the interruption occurs, the temperature control is not affected. Under normal operating conditions, the compressor off time is longer than five (5) minutes. In this case, the use of these timers will not lengthen this off cycle.
This field adjustable model will operate on control voltages of 19 VAC through 288 VAC. Unlike most universal voltage timers, the AC-503 is a two (2) terminal device that simply connects in series with the control voltage, thermostat and control relay making for easy installation. This timer is engineered to provide true thermostat interruption protection even when there is a continuous current flow through the thermostat's cooling anticipator.

NOTE: When used on 120/240 VAC control circuits, the external jumper should be cut. This disables the 24 VAC bypass circuit.

\section*{WIRING}

The AC-505-5 provides short cycle protection by locking out the compressor for a period of time after a voltage or thermostat interruption. Subsequent interruptions will not increase the delay period. Since the delay begins when the interruption occurs, the temperature control is not affected. Under normal operating conditions, the compressor off time is longer than five (5) minutes. In this case, the use of these timers will not lengthen this off cycle.
This is an easy to install, two (2) wire Short Cycle Timer that connects in series with the control voltage and control relay. The AC-505 is engineered to provide true thermostat interruption protection even when there is continuous current flow through the thermostat's cooling anticipator.

\section*{Delay-On-Break Timer}

ORDERING INFORMATION
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
MODEL \\
NUMBER
\end{tabular} & DESCRIPTION \\
\hline AC-505-5 & Delay-On-Break Timer \\
\hline
\end{tabular}

\section*{SPECIFICATIONS}
\begin{tabular}{ll}
CONTROL VOLTAGE & 24 VAC \\
\hline OUTPUT RATING & 250 VA Inrush; 25 VA Run @ 24 VAC @ \(77^{\circ} \mathrm{F}\) \\
\hline TIME DELAY & \(5 \mathrm{~min} . \pm 20 \%\) \\
\hline DIMENSIONS & \(2.65 " \times 2.13 " \times .875{ }^{\prime \prime}\) high. \\
\hline WEIGHT & 3 oz.
\end{tabular}

\section*{WIRING}

This family of controls provides short cycle protection by locking out the compressor for a period of time after a voltage or thermostat interruption. Subsequent interruptions will not increase the delay period. Since the delay begins when the interruption occurs, the temperature control is not affected. Under normal operating conditions, the compressor off time is longer than five (5) minutes. In this case, the use of these timers will not lengthen this off cycle.
These are easy to install two (2) terminal Short Cycle Timers that connect in series with the control voltage and control relay. The 24 VAC model employs a built-in bypass circuit for allowing continuous flow through the thermostat's cooling anticipator while the timer output is off.

Delay-On-Break Timer

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{CONTROL VOLTAGE} & ASC-500-5 & 24 VAC \\
\hline & ASC-501-5 & 110/120 VAC \\
\hline & ASC-501-3 & \\
\hline & ASC-502-5 & 208/240 VAC \\
\hline & ASC-502-3 & \\
\hline \multirow[t]{5}{*}{OUTPUT RATING} & ASC-500-5 & 250 VA Inrush; 25 VA Run @ 24 VAC \\
\hline & ASC-501-5 & 1250 VA Inrush; 125 VA Run \\
\hline & ASC-501-3 & @ 120 VAC \\
\hline & ASC-502-5 & 1250 VA Inrush; 125 VA Run \\
\hline & ASC-502-3 & @ 240 VAC \\
\hline DIMENSIONS & \multicolumn{2}{|l|}{2.0" x 2.0" x .75" high} \\
\hline WEIGHT & 3 oz . & \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
MODEL \\
NUMBER
\end{tabular} & DESCRIPTION \\
\hline ASC-500-5 & 5 Min. 24 VAC \\
\hline ASC-501-5 & 5 Min. 120 VAC \\
\hline ASC-502-5 & 5 Min. 240 VAC \\
\hline ASC-501-3 & 3 Min. 120 VAC \\
\hline ASC-502-3 & 3 Min. 240 VAC \\
\hline
\end{tabular}

\section*{WIRING}

Delay-On-Make Timers

The ATC Diversified STAR PERFORMER provides short cycle protection of compressors by delaying restart after a voltage or control circuit interruption. When the interruption occurs, the control relay drops out. The delay period begins when power is restored, providing random restart.

This universal voltage Delay-on-Make Short Cycle Timer provides the ultimate protection against short cycling of a compressor. The Star Performer offers true thermostat interruption protection even in 24 VAC control circuits.

The general conception of thermostat operation is that when the mercury tilts open, all control circuit current stops. The fact is that the cooling anticipator located inside most 24 volt thermostats does allow a small amount of current to flow (trickle current). This trickle current fools most Delay-on-Make Short Cycle Timers, as they will not reset as a result of this continuous current.

The STAR PERFORMER is engineered to provide true thermostat interruption protection even when the trickle current is present. The adjustable delay is ideal for providing random starting in multiple equipment installations.
NOTE: When used on 120/240 VAC control circuits, the external jumper should be cut. This disables the 24 VAC bypass circuit.

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
MODEL \\
NUMBER
\end{tabular} & DESCRIPTION \\
\hline AC-800 & Delay-On-Make Timer \\
\hline
\end{tabular}

\section*{SPECIFICATIONS}

CONTROL VOLTAGE \(24 / 120,208 / 240\) VAC
OUTPUT RATING 250 VA Inrush; 25 VA Run @ 24 VAC, or 1250 VA Inrush; 125 VA Run @ 120/240 VAC
\begin{tabular}{ll}
\hline TIME DELAY & 0.2 to 8 min . Adjustable \\
\hline WEIGHT & 2.5 oz. to 3 oz.
\end{tabular}

\section*{WIRING}

The AC-410 Series are plug in Phase Sequence and Loss Monitors that protect 3 phase refrigeration equipment from adverse line conditions such as:

PHASE LOSS (SINGLE PHASING): When any one phase drops to \(83 \%\) or less of the adjustment setting.
UNDER VOLTAGE (BROWN OUTS): When all three phase voltages drop to \(90 \%\) or less of the adjustment setting.

PHASE REVERSAL (IMPROPER SEQUENCE): When the wrong sequence is applied to the equipment.

\section*{OPERATION}

When any of the mentioned occurs, the internal control relay drops out and a 3 minute delay-on-break time delay begins. This delay is used to lock out the compressor, allowing time for head pressure to equalize. When the delay has completed, the relay will re-energize provided all conditions are corrected and the external control voltage is present on terminals six (6) and seven (7). A green indicator glows when all line conditions are normal and a red indicator shows when the timer is in its delay.

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{DROP OUT} & 1 Ø Low & 83\% of Adjustment Setting \\
\hline & 3 Ø Low & 90\% of Adjustment Setting \\
\hline PHASE SEQUENCE & \multicolumn{2}{|l|}{ABC (Will Not Operate CBA)} \\
\hline \multirow[t]{2}{*}{TIME DELAYS} & Operate & 3 Minutes \(\pm 20 \%\) \\
\hline & Release & 100 Milliseconds \\
\hline \multirow[t]{2}{*}{OUTPUT RATING} & AC-410 & SPDT, 10 Amps @ 240 VAC, Resistive; 470 VA, Inductive. \\
\hline & \[
\begin{aligned}
& \hline \text { AC-411 \& } \\
& \text { AC-412 }
\end{aligned}
\] & SPDT, 10 Amps @ 240 VAC, Resistive; 180 VA, Inductive \\
\hline TEMPERATURE & Operate & \(-4^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Style "A" & \\
\hline WEIGHT & 7 oz . & \\
\hline
\end{tabular}

\section*{Phase Sequence \(\mathcal{E}\) Loss Monitor}

\section*{ORDERING INFORMATION}

Consult factory for available models.

\section*{WIRING}

The CV-100 and \(\mathbf{2 0 0}\) Series are Under/Over Voltage Monitors combined with short cycle protectors used for appliance control. These units employ a user selectable voltage range Set Point switch.

\section*{OPERATION}

This switch should be positioned to match the line voltage for proper operation. When the line voltage goes below (brown out) or above the preselected operating range, the internal relay drops out removing the plugged-in appliance from these adverse fault conditions. When the voltage returns to the normal operating range, a five (5) minute delay begins. Upon completion, the internal relay picks up allowing the plugged-in appliance to start. LED indicators give an immediate visual reference as to the status of the control. The GREEN LED indicates conditions are normal. When a fault condition occurs the GREEN LED will extinguish and the RED LED will glow. When a fault condition has been corrected, the RED LED will begin to flash. The RED LED will continue to flash until the five (5) minute delay period elapses. At the end of the delay period the RED LED will extinguish and the GREEN LED will glow. When both LED's are extinguished, a total loss of power is indicated.

The CV-XXX-AFN Series monitors under voltage only and do not feature LED indicators. They also incorporate the five (5) minute short cycle delay. This style is epoxy encapsulated to protect against adverse environmental conditions.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{MODEL NUMBER} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SET } \\
& \text { POINT }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { VOLTAGE } \\
& \text { 50/60 HZ }
\end{aligned}
\]} & \multicolumn{2}{|l|}{UNDER VOLTAGE} & \multicolumn{2}{|l|}{OVER VOLTAGE} & \multicolumn{2}{|l|}{OUTPUT RATING} & \multirow[t]{2}{*}{RECEPTACLE STYLE} & \multirow[t]{2}{*}{WEIGHT} \\
\hline & & & DROP OUT & PICK UP & PICK UP & DROP OUT & RUN & LOCK ROTOR & & \\
\hline \multirow[t]{2}{*}{CV-100RS} & 110 & 110 VAC & 87 VAC & 95 VAC & 120 VAC & 128 VAC & 15A & 40A & \multirow[t]{2}{*}{\[
\begin{array}{cc}
0 & 0 \\
0
\end{array}
\]} & \multirow[t]{2}{*}{8.5 oz} \\
\hline & 120 & 120 VAC & 95 VAC & 103 VAC & 131 VAC & 140 VAC & 15A & 40A & & \\
\hline \multirow[t]{2}{*}{CV-200RS-15} & 230 & 230 VAC & 190 VAC & 198 VAC & 243 VAC & 253 VAC & 15A & 52A & \multirow[t]{2}{*}{\[
\left[\begin{array}{c}
\square \\
0
\end{array}\right]
\]} & \multirow[t]{2}{*}{8.5 oz .} \\
\hline & 240 & 240 VAC & 202 VAC & 210 VAC & 258 VAC & 268 VAC & 15A & 52A & & \\
\hline \multirow[t]{2}{*}{CV-200RS-20} & 230 & 230VAC & 190 VAC & 198 VAC & 243 VAC & 253 VAC & 20A & 72A & \multirow[t]{2}{*}{\[
\begin{gathered}
0 \\
0 \\
0
\end{gathered}
\]} & \multirow[t]{2}{*}{8.5 oz} \\
\hline & 240 & 240 VAC & 202 VAC & 210 VAC & 258 VAC & 268 VAC & 20A & 72A & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { CV-120-AFN } \\
& \text { CV-230-AFN } \\
& \text { CV-240-AFN }
\end{aligned}
\]} & N/A & 120 VAC & 95 VAC & 103 VAC & N/A & N/A & 20A & 52A & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Not Applicable } \\
1 / 4 \text { quick" } \\
\text { disconnect } \\
\text { terminals }
\end{gathered}
\]} & \multirow[t]{3}{*}{8.5 oz.} \\
\hline & N/A & 230 VAC & 190 VAC & 198 VAC & N/A & N/A & 20A & 52A & & \\
\hline & N/A & 240 VAC & 202 VAC & 210 VAC & N/A & N/A & 20A & 52A & & \\
\hline
\end{tabular}

\section*{OPERATION}

The ATC Diversified SPM Series Single Channel Seal Failure module is a specialized control for monitoring the shaft seal of a submersible pump motor. A leak is detected by sensing the position of a resistive float switch installed in the seal cavity. When the resistance drops below the sensitivity rating, the output relay energizes and the LED illuminates.

\section*{DIMENSIONS (INCHES)}

\section*{WIRING}

RB-11/PF013A

\section*{Single Channel Seal Failure Alarm}

\section*{SPECIFICATIONS}

CONTROL VOLTAGE \(120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\)
\begin{tabular}{|c|c|}
\hline SWITCH VOLTAGE & 9 VDC \\
\hline ISOLATION & 2500 Volts \\
\hline POWER REQUIRED & 2 VA \\
\hline DUTY CYCLE & Continuous \\
\hline SENSITIVITY & \begin{tabular}{l}
\(470 \Omega \pm 10 \%\) Fixed \(300 \Omega\) to \(10 \mathrm{~K} \Omega \pm 10 \%\) Adjustable \\
\(4.7 \mathrm{~K} \Omega\) to \(100 \mathrm{~K} \Omega \pm 10 \%\) Adjustable
\end{tabular} \\
\hline CONTACT RATING & DPDT, 10 A @ 250 VAC Resistive \\
\hline RESPONSE TIMES & Operate 15 ms (approximately) \\
\hline & Release 8 ms (approximately) \\
\hline LIFE EXPECTANCY & Mechanical 10,000,000 Operations (Minimum) \\
\hline & Electrical 50,000 Operations @ Rated Load \\
\hline INDICATORS & Red LED illuminates when leak is detected \\
\hline TEMPERATURE & Operate \(\quad-4^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage \(\quad-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & 11-Pin plug-in "A" style enclosure \\
\hline WEIGHT & 8 oz. \\
\hline
\end{tabular}

\section*{MODEL NUMBER}
\begin{tabular}{l|l|l|l|l|}
\hline MODEL NUMBER & SPM & 120 & AAA & \\
\hline SENSITIVITY & & \\
\begin{tabular}{ll|l|}
\hline \(470 \Omega \pm 10 \%\) Fixed & & \\
\hline \(300 \Omega\) to \(10 \mathrm{~K} \Omega \pm 10 \%\) Adjustable & & \\
\hline \(4.7 \mathrm{~K} \Omega\) to \(100 \mathrm{~K} \Omega \pm 10 \%\) Adjustable & & 10 K \\
\hline
\end{tabular}
\end{tabular}

\section*{OPERATION}

The ATC Diversified Electronics SPM Series dual Seal Failure module is a specialized control for monitoring the shaft seals of two submersible pump motors. Leaks are detected by sensing the conductivity of the contaminating fluid through probes installed in the seal cavity. When a seal begins to leak, the seal failure module energizes one of its SPST output relays indicating that the seal needs to be replaced before the motor is damaged. The sensitivity of the probe inputs is field adjustable. When the resistance between one of the probe inputs and the common connection drops below the sensitivity setting, the corresponding output relay and LED are activated.

\section*{Dual Channel Seal Failure Alarm}

\section*{SPECIFICATIONS}
\begin{tabular}{ll}
CONTROL VOLTAGE & \(120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) \\
\hline SWITCH VOLTAGE & 9 VDC \\
\hline ISOLATION & 2500 Volts \\
\hline POWER REQUIRED & 2 VA \\
\hline DUTY CYCLE & Continuous \\
\hline SENSITIVITY & \(10 \mathrm{~K} \Omega\) to \(25 \mathrm{~K} \Omega \pm 10 \%\) Adjustable \\
& \(4.7 \mathrm{~K} \Omega\) to \(100 \mathrm{~K} \Omega \pm 10 \%\) Adjustable \\
\hline CONTACT RATING & (2) SPST-N.0., 5 A @ 120 VAC Resistive \\
\hline LIFE EXPECTANCY & Mechanical 20 Million Operations \\
\cline { 2 - 2 } & Electrical \(\quad 50,000\) Operations @ Rated Load \\
\hline INDICATORS & Red LED illuminates when leak is detected \\
\hline TEMPERATURE & Operate \(\quad-44^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\cline { 2 - 2 } RATING & Storage \(\quad-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & \(8-P i n ~ p l u g-i n ~ " A " ~ s t y l e ~ e n c l o s u r e ~\) \\
\hline WEIGHT & 8 oz.
\end{tabular}

\section*{DIMENSIONS}
(INCHES)

\section*{WIRING}

MODEL NUMBER
RB-08/PF083A

\section*{OPERATION}

The non-volatile Latching Temperature Switch relay monitors a normally-closed-low temperature switch. It incorporates a bistable relay that retains its state during power failures. LEDs indicate the status of the relay, and connections for an external reset button are provided for manual control. The reset inputs of multiple units may be connected to a single push button as long as proper polarity is observed when making the connections. Under normal conditions the temperature switch is closed and the relay is de-energized. When the temperature switch opens, the relay energizes and latches on until the temperature switch re-closes and the reset button is pressed. The unit will function properly with zero to \(2 \mathrm{k} \Omega\) of resistance in series with the temperature switch.

Temperature Switch Relay

WIRING

RB-11/PF113A

RB-11/PF113A

SPECIFICATIONS
\begin{tabular}{lll}
CONTROL VOLTAGE & \(120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) \\
\hline POWER REQUIRED & 2 VA & \\
\hline DUTY CYCLE & Continuous & \\
\hline CONTACT & SPM-120-ACA & \begin{tabular}{l}
SPDT, \(10 \mathrm{~A} @ 250 \mathrm{VAC}\), \\
Resistive, \(360 \mathrm{VA} \mathrm{Ind}\).
\end{tabular} \\
\begin{tabular}{lll}
RATING & SPM-120-ADA & \begin{tabular}{l}
DPDT, \(10 \mathrm{~A} @ 250 \mathrm{VAC}\), \\
Resistive
\end{tabular}
\end{tabular}
\end{tabular}
\begin{tabular}{lll}
\hline RESPONSE TIMES & Operate & 10 ms (approximately) \\
\cline { 2 - 3 } & Release & 1 SEC (approximately) \\
\hline LIFE EXPECTANCY & Mechanical & 30 Million Operations \\
\cline { 2 - 3 } & Electrical & 50,000 Operations @ Rated Load \\
\hline INDICATORS & SPM-120-ACA & \begin{tabular}{l}
Green LED illuminates under \\
normal conditions Red LED \\
illuminates under fault conditions
\end{tabular} \\
\cline { 2 - 3 } & SPM-120-ADA & None \\
\hline TEMPERATURE & Voltage & 12 VDC \\
\hline SWITCH & Current & 2 mA max. \\
\hline TEMPERATURE & Operate & \(-4^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & \(11-\) Pin plug-in "A" style enclosure \\
\hline WEIGHT & 8 oz. &
\end{tabular}

ORDERING INFORMATION
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
MODEL \\
NUMBER
\end{tabular} & DESCRIPTION \\
\hline SPM-120-ACA & \begin{tabular}{c}
SPDT, 10A @ 250V AC \\
Latching Temp Switch
\end{tabular} \\
\hline SPM-120-ADA & \begin{tabular}{c}
DPDT, 10A @ 250V AC \\
Latching Temp Switch
\end{tabular} \\
\hline
\end{tabular}

> Submersible Pump Monitor Dual Function Alarm Relay

\section*{SPECIFICATIONS}

CONTROL VOLTAGE 120 VAC, 50/60 Hz (Model AEE) \(120-240 \mathrm{~V}\) AC \(50 / 60 \mathrm{~Hz}\) (Model AEA) 24V AC/DC (Model AEA)

SENSOR VOLTAGE 12 VDC (Model AEE)
9V DC (Model AEA)
POWER REQUIRED 4 VA
DUTY CYCLE Continuous
SENSITIVITY Leakage \(1 \mathrm{~K} \Omega\) to \(35 \mathrm{~K} \Omega\) adjustable (Model AEE) \(1 \mathrm{~K} \Omega\) to \(25 \mathrm{~K} \Omega\) adjustable (Model AEA) \(4.7 \mathrm{~K} \Omega\) to \(100 \mathrm{~K} \Omega\) adjustable (Model AEA) Over Temperature Open Circuit
CONTACT RATING (2) SPDT, 10 A @ 120 VAC Resistive
LIFE EXPECTANCY Mechanical 10 Million Operations Electrical 100,000 Operations @ Rated Load

INDICATORS
Green LED illuminates under normal conditions Red LED illuminates when leak is detected Red LED illuminates on over-temperature
\begin{tabular}{lll}
TEMPERATURE & Operate & \(-4^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
RATING & Storage & \(-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
\end{tabular}

RESPONSE TIMES Leakage Trip 1 SEC Leakage Reset 1 SEC Temperature Trip 0.1 SEC

TERMINATIONS (12) \#8-32 Screw Terminals (Model AEE)
ENCLOSURE Style "E" Lexan \({ }^{\circledR}\) Surface Mounted (Model AEE) Style "A" 11 Pin Plug-In (Model AEA)
WEIGHT 17 oz. (Model AEE)

INDICATORS Green LED illuminates under normal conditions 17 oz. (Model AEE)

RESET Seal Leakage: When the leakage condition clears the relay resets automatically Over Temperature:
1. Remote Manual Reset
2. For " S " type models when reset switch is set in auto position the unit will be reset by interrupting supply voltage for 1.5 sec .

The ATC Diversified Submersible Pump Monitor is a specialized control for monitoring the shaft seal and stator temperature of a submersible pump motor. Seal leakage is detected by either a resistive float switch or a pair of conductive probes installed in the seal cavity. Over-temperature is detected by a normally-closed-low temperature switch mounted on the stator. The over-temperature function incorporates a bistable relay that retains its position during power failures. For \((S)\) models over-temperature reset can be configured by changing the reset switch.

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline MODEL NUMBER & DESCRIPTION \\
\hline SPM120AEE & Dual Function Alarm Relay 120 vac Base Mount. \\
\hline SPM120AEA25K & Dual Function Alarm Relay 120 vac, 1k to 25 k sensitivity, Plug-in. \\
\hline SPM24AEA25K & Dual Function Alarm Relay \(24 \mathrm{vac} / \mathrm{dc}\), 1k to 25 k sensitivity, Plug-in. \\
\hline SPM120AEA100K & Dual Function Alarm Relay 120 vac, 4.7 k to 100 k sensitivity, Plug-in. \\
\hline SPM24AEA100K & Dual Function Alarm Relay 24v ac/dc 4.7 k to 100 k sensitivity, Plug-in. \\
\hline \multicolumn{2}{|l|}{SPM120AEA(S) 25K Dual Function Alarm Relay 120 vac , 1k to 25 k sensitivity, Plug-in, reset mode selector switch.} \\
\hline SPM24AEA(S)25K & Dual Function Alarm Relay \(24 \mathrm{vac} / \mathrm{dc}\), 1 k to 25 k sensitivity, Plug-in, reset mode selector switch. \\
\hline \multicolumn{2}{|l|}{SPM120AEA(S) 100K Dual Function Alarm Relay \(120 \mathrm{vac}, 4.7 \mathrm{k}\) to 100 k sensitivity, Plug-in, reset mode selector switch.} \\
\hline \[
\text { SPM24AEA (S) } 100 \mathrm{~K}
\] & Dual Function Alarm Relay \(24 \mathrm{vac} / \mathrm{dc}\), 4.7 k to 100 k sensitivity, Plug-in, reset mode selector switch. \\
\hline
\end{tabular}

SPM120AEE Dual Function Alarm Relay 120 vac Base Mount.
SPM120AEA25K Dual Function Alarm Relay 120 vac, 1 k to 25 k sensitivity, Plug-in.

SPM24AEA25K Dual Function Alarm Relay 24v ac/dc, 1 k to 25 k sensitivity, Plug-in. 4.7 k to 100 k sensitivity, Plug-in.

Dual Function Alarm Relay \(24 \mathrm{vac} / \mathrm{dc}\) 4.7 k to 100 k sensitivity, Plug-in. 1 k to 25 k sensitivity, Plug-in, reset mode selector switch. 1k to 25 k sensitivity, Plug-in, reset mode selector switch. ual function Alarm Relay 120 vac, 4.7 k to 100 k Dual Function Alarm Relay 24v ac/dc, reset mode selector switch.

\section*{DIMENSIONS (INCHES) MODEL (AEE)BASE MOUNT}

\section*{DIMENSIONS (INCHES)}

\section*{OPERATION}

Figure 1 shows the connections for use with a Flygt model FLS float switch. The leakage sensitivity must be adjusted to 1 k for float switch applications. If a pair of conductive probes is used to sense seal leakage, a 100 k resistor is required as shown in Figure 2, and the sensitivity should be set to the desired value.
The states of the unit's relay outputs are determined by the series combination resistance of the leakage and temperature sensors. Under normal conditions the resistance remains between the leakage and over-temperature sensitivities, and both output relays are de-energized. If the temperature switch opens, the over-temperature relay latches on until the remote reset button is pressed. Two conditions must be met for reset to occur: power must be applied and the temperature switch must be closed. If the leakage sensor resistance drops below the leakage sensitivity setting, the leakage relay energizes. When the leakage condition clears, the relay resets automatically.

\section*{WIRING MODEL (AEE) (BASE MOUNT)}

Figure 1

\section*{WIRING MODEL (AEA) (PLUG-IN)}

Figure 1

\section*{ACCESSORIES: SOCKETS}

OT11-PC 11 pin din-rail mount socket.
RB-11 11 pin surface mount socket.

Figure 2

Phase Rotation Tester

\section*{SPECIFICATIONS}

SUPPLY VOLTAGE 20 to \(600 \mathrm{VAC}, 50 / 60 / 400 \mathrm{~Hz}\)
SENSOR VOLTAGE 12 VDC
ABSOLUTE 700 VAC, Phase-to-Phase
MAXIMUM
VOLTAGE
\begin{tabular}{lll}
\hline BATTERY & \multicolumn{2}{l}{9 l, Included } \\
\hline ISOLATION & 3000 VAC, Leads to User \\
\hline ROTATION/ & Red & Phase Loss/No Voltage \\
\cline { 2 - 3 } SEQUENCE & Yellow & Low Battery \\
\hline
\end{tabular}

OPERATOR Momentary Test Button
CONTROL
\begin{tabular}{lll}
\hline INDICATORS & Green & Normal Rotation/Sequence \\
\cline { 2 - 3 } & Red & Reverse \\
\hline TEMPERATURE & Operate & \(32^{\circ}\) to \(113^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+45^{\circ} \mathrm{C}\right)\) \\
\cline { 2 - 3 } & Storage & \(-40^{\circ}\) to \(140^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+60^{\circ} \mathrm{C}\right)\)
\end{tabular}
\begin{tabular}{ll}
\hline RESPONSE TIMES & 100 ms \\
\hline LEADS & 18 ", color coded, battery clip type \\
\hline DIMENSIONS & \(3.75 \times 2.625 \times 1.5\) inches \\
\hline WEIGHT & NET: 4.16 oz
\end{tabular}

The PRT-100 is a hand-held tester that takes the guesswork out of connecting a 3 -phase motor. The direction of rotation of a motor depends on phase sequence of the power line connections. If the sequence is reversed, the motor will run in the wrong direction, possibly damaging the equipment connected to the motor. The PRT-100 identifies the leads of a three-phase motor and detects the sequence of a three-phase power line. Once the motor and line leads are properly identified, the motor can be wired so that it turns in the desired direction on the first try. The unit also detects phase loss and no voltage conditions.

\section*{OPERATION}

To identify the leads of a three-phase line, connect the tester to the energized line and press the test button. Either the normal or reverse LED will glow. If the reverse LED glows, switch two leads and press the test button again. The normal LED should now glow. Label the three-phase line conductors according to the marking on the tester. If the loss LED glows, a phase loss or no voltage condition exists, and the normal and reverse LEDs are meaningless. Correct the loss condition and retest.
To identify the leads of a three-phase motor, connect the tester to the de-energized motor, turn the rotor in the desired direction, and press the test button. If the reverse LED glows, switch two leads and repeat. The normal LED should now glow. Label the motor leads according to the markings on the tester. NOTE: the loss LED will glow during motor testing. This is normal since the turning motor generates less than 20 volts.
De-energize the three-phase line and connect the line conductors to the matching motor leads. When the motor is energized, it will run in the desired direction.

\section*{DIMENSIONS (INCHES)}

The UPA-100 Power Alert reduces the risk of electrical arc flash by pre-verifying the electrical isolation from outside of a control panel. Hard wired to the circuit breaker or main disconnect, the UPA flashes whenever voltage is present. Engineered with redundant circuitry, the Power Alert is powered by the same voltage that it indicates.

\section*{OPERATION}

The eight detector UPA-100 visually alerts to the presence of dangerous AC or DC (Stored Energy) potentials occurring between any combination of the four monitored input lines (L1, L2, L3, GND). Two LED indicators are assigned to each input line and are designated "+" and "-". For each input line carrying an AC potential (bi-polar), both the " + " and "-" LEDs will be active. A DC or Stored Energy potential will illuminate the " + " LED for the positive line and the "-" LED for the negative line.

\section*{OSHA 1910.147 THE CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)}

Following the application of lockout or tagout devices to energy isolating devices, all potentially hazardous stored or residual energy shall be relieved, disconnected, restrained, and otherwise rendered safe. (d)(5)(ii)
If there is a possibility of reaccumulation of stored energy to a hazardous level, verification of isolation shall be continued until the servicing or maintenance is completed, or until the possibility of such accumulation no longer exists. (d)(6)
"Verification of Isolation." Prior to starting work on machines or equipment that have been locked out or tagged out, the authorized employee shall verify that isola tion and de-energization of the machine or equipment have been accomplished.

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{OPERATIONAL RANGE} & AC Single or 3-Phase & 40 to 600 VAC, \(50 / 60 / 400 \mathrm{~Hz}\), (LINE-TO-LINE or LINE-TO-GND) \\
\hline & DC or Stored Energy & \begin{tabular}{l}
30 to 1000 VDC, \\
(LINE-TO-LINE or LINE-TO-GND)
\end{tabular} \\
\hline MAXIMUM RATED VOLTAGE & \multicolumn{2}{|l|}{750 VAC/1000 VDC (LINE-TO-LINE or LINE-TO-GND)} \\
\hline DETECTION THRESHOLDS & \multicolumn{2}{|l|}{29 VAC 3-Phase, 40 VAC SINGLE-Phase, 27 VDC (TYP Cutoff)} \\
\hline POWER CONSUMPTION & \multicolumn{2}{|l|}{1.2 Watts @ 750 VAC (Approximately)} \\
\hline TEMPERATURE & Operate & \(-4^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATING & Storage & \(-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & \multicolumn{2}{|l|}{NEMA 4X \(105^{\circ} \mathrm{C}\) PVC, Totally Encapsulated for Environment Protection} \\
\hline
\end{tabular}

TERMINATIONS (4) \(8 \mathrm{ft}, 18\) AWG 1000V, UL-1452

\section*{WEIGHT 9 oz .}

INDICATOR FLASH RATES (L1, L2, L3, GND)
\begin{tabular}{lccccccc}
3- Phase Line-To-Line (VAC) & \(<29\) & 30 & 120 & 240 & 480 & 600 & 750 \\
\hline Flashes/Sec (Typical) & 0 & 1.3 & 4.2 & 5.8 & 7.3 & 8.0 & 8.8 \\
\cline { 2 - 8 } & \(<27\) & 30 & 48 & 110 & 300 & 600 & 1000 \\
\hline DC or Stored Energy (VDC) & 0 & 1.6 & 2.5 & 4.5 & 6.9 & 8.8 & 9.1
\end{tabular}

GND DETECTOR THRESHOLDS (LEAKAGE ANY PHASE-TO-GROUND)
\begin{tabular}{lccccc}
3- Phase Line-To-Line (VAC) & 30 & 120 & 240 & 480 & 750 \\
\cline { 2 - 7 } & L1, L2, or L3 To Ground Continuity (OHMS) & 2 M & 2 M & 3 M & 5 M \\
\hline Detector Included Fault Current (\(\mu \mathrm{A}\)) & 7 & 26 & 38 & 60 & 67
\end{tabular}

\footnotetext{
DETECTOR INCLUDED FAULT CURRENT (PHASE-T0-GROUND SHORT)
\(\begin{array}{lllllll}3- & \text { Phase Line-To-Line (VAC) } & 30 & 120 & 240 & 480 & 750 \\ & 108 & 219 & 455 & 730\end{array}\)
}

Universal Power Alert
- Detects Single or 3-Phase AC \& DC Voltage or Stored Energy
- Redundant Circuitry

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline MODEL NUMBER & DESCRIPTION \\
\hline UPA-100 & Universal Power Alert \\
\hline UPA-100S & Universal Power Alert \\
Solid-ON Red
\end{tabular}\(|\)\begin{tabular}{cc|}
\hline Accessories & ANSI WARNING Plate \\
\hline
\end{tabular}

The UPA-100 Series is UL Listed under UL File Number E55826. UPA-100C UNIVERSAL POWER ALERT CAT III CAT IV

\section*{DIMENSIONS \\ (INCHES)}

The UPA \(\mathbf{1 3 0}\) Power Alert reduces the risk of electrical arc flash by pre-verifying the electrical isolation from outside of a control panel. Hard wired to the circuit breaker or main disconnect, the UPA flashes whenever voltage is present. Engineered with redundant circuitry, the Power Alert is powered by the same voltage that it indicates.

\section*{OPERATION}

The eight detector UPA-130 visually alerts to the presence of dangerous AC or DC (Store Energy) potentials occurring between any combination of the four monitored input lines (L1, L2, L3, GND). Two LED indicators are assigned to each input line and are designated "+" and "-". For each input line carrying an AC potential (bi-polar), both the "+" and "-" LEDs will be active. A DC or Stored Energy potential will illuminate the "+" LED for the positive line and the "-" LED for the negative line.
The UPA-130 Series is UL Listed under UL File Number E55826.

\section*{30mm Universal Power Alert}
\begin{tabular}{ll}
- Verification of Stored Energy Inside A Panel & - Redundant Circuitry \\
- Fits 30 mm Knockout & - 40-750 VAC, \(30-1000\) VDC
\end{tabular}

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline OPERATIONAL RANGE & AC SINGLE OR 3-PHASE DC OR STORED ENERGY & & \[
\begin{aligned}
& 500 \mathrm{VA} \\
& 10001
\end{aligned}
\] & \[
\begin{aligned}
& \text { C, (LII }
\end{aligned}
\] & 400 Hz , -TO-LINE \\
\hline MAXIMUM RATED VOLTAGE & 750 VAC/1000 VDC (LINE & TO-LIN & or LIN & -TO-G & \\
\hline DETECTION THRESHOLDS & 29 VAC 3-Phase, 40 VAC & NGLE & hase, & & YP CUTOFF) \\
\hline POWER CONSUMPTION & 1.2 Watts @ 750 VAC & roxim & & & \\
\hline TEMPERATURE RATING & Operate & \(-4^{\circ}\) to & \(131{ }^{\circ} \mathrm{F}\) & \(-20^{\circ}\) & \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline & Storage & -40 \({ }^{\circ}\) & \(185^{\circ}\) & & \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Totally Encapsulated for E & vironm & nt Pro & ction & \\
\hline TERMINATIONS & (4) \(8 \mathrm{ft}, 18\) AWG 1000 V , & & YEL & & GRN/YEL GRD \\
\hline & UL-1452 & L1 & L2 & L3 & GRD \\
\hline
\end{tabular}
WEIGHT 7 oz .

INDICATOR FLASH RATES (L1, L2, L3, GND)
\begin{tabular}{lccccccc}
3- Phase Line-To-Line (VAC) & \(<29\) & 30 & 120 & 240 & 480 & 600 & 750 \\
\hline Flashes/Sec (Typical) & 0 & 1.3 & 4.2 & 5.8 & 7.3 & 8.0 & 8.8 \\
\hline DC or Stored Energy (VDC) & \(<27\) & 30 & 48 & 110 & 300 & 600 & 1000 \\
\hline Flashes/Sec (Typical) & 0 & 1.6 & 2.5 & 4.5 & 6.9 & 8.8 & 9.1
\end{tabular}

GND DETECTOR THRESHOLDS (LEAKAGE ANY PHASE-TO-GROUND)
\begin{tabular}{llllll}
\(3-\) Phase Line-To-Line (VAC) & 30 & 120 & 240 & 480 & 750
\end{tabular}
\begin{tabular}{llllll}
L1, L2, or L3 To Ground Continuity (OHMS) & \(2 M\) & \(2 M\) & \(3 M\) & \(5 M\) & \(7 M\) \\
\hline
\end{tabular}
\begin{tabular}{llllll}
Detector Included Fault Current (\(\mu \mathrm{A})\) & 7 & 26 & 38 & 60 & 67
\end{tabular}

DETECTOR INCLUDED FAULT CURRENT (PHASE-TO-GROUND SHORT)
\begin{tabular}{llllll}
\(3-\) Phase Line-To-Line (VAC) & 30 & 120 & 240 & 480 & 750 \\
\hline 0
\end{tabular}
\begin{tabular}{lllllll}
\hline 0 OHM Phase-To-Ground Current \((\mu \mathrm{A})\) & 28 & 108 & 219 & 455 & 730
\end{tabular}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline MODEL NUMBER & DESCRIPTION \\
\hline UPA-130 & 30 mm Universal Power Alert \\
\hline UPA-130-DIV2 & Class I, Div 2 \\
\hline UPA-130S & Solid ON \\
\hline UPA-130-GOV & Amber LED \\
\hline Accessories & \\
\hline UPA-WP130 & ANSI Warning Plate \\
\hline UPA-BZL & \begin{tabular}{c}
Flush Mounting Kit for UPA-130 Series \\
Flash 1-1/4" knockout
\end{tabular} \\
\hline
\end{tabular}

\section*{WIRING}

THREE PHASE WYE, 4W + GND

THREE PHASE DELTA, 3W + GND

DIMENSIONS (INCHES)

- Ideal for use in Lockout/Tagout Procedure
- Enhances NFPA 70E \& OSHA Compliance
- Reduces Arc Flash \& Electrocution Risk
- Detects Stored Energy
- Detects Ground Fault Problems
- No Voltage Present on Enclosure Door Panels
- DIN Rail or Surface Mounted Base

INDICATOR FLASH RATES (L1, L2, L3, GND)
\begin{tabular}{lccccccc}
3- Phase Line-To-Line (VAC) & \(<14\) & 20 & 120 & 240 & 480 & 600 & 750 \\
\hline Flashes/Sec (Typical) & 0 & 0.9 & 2.6 & 3.3 & 3.7 & 3.8 & 3.9 \\
\hline DC or Stored Energy (VDC) & \(<15\) & 20 & 48 & 110 & 300 & 600 & 1000 \\
\hline Flashes/Sec (Typical) & 0 & 0.9 & 1.9 & 3.2 & 3.7 & 4.0 & 4.0
\end{tabular}

Epileptic Photosensitivity Compliance: Below 5-30 Flashes/Sec
GND DETECTOR THRESHOLDS (LEAKAGE ANY PHASE-TO-GROUND)
3- Phase Line-To-Line (VAC) \(\quad 20 \quad 120 \quad 240 \quad 480 \quad 750\)
\(\begin{array}{lllllll}\text { L1, L2, or L3 To Ground Continuity (OHMS) } & 2 M & 5 M & 7.5 \mathrm{M} & 13 \mathrm{M} & 20 \mathrm{M}\end{array}\) Detector Included Fault Current (\(\mu \mathrm{A}\)) \(\quad 4 \quad 12\)
DETECTOR INCLUDED FAULT CURRENT (PHASE-TO-GROUND SHORT)
3- Phase Line-To-Line (VAC) \(\quad 20\)\begin{tabular}{lllll}
120 & 240 & 480 & 750
\end{tabular}
0 OHM Phase-To-Ground Current (\(\mu \mathrm{A}\)) \(\quad 15\)\begin{tabular}{llllll}
105 & 216 & 435 & 684
\end{tabular}

The UPA-200 Power Alert reduces the risk of electrical arc flash by pre-verifying the electrical isolation from outside of an electrical panel. Hard wired to the circuit breaker or main disconnect, the UPA LED's flash to indicate the presence of hazardous conditions (20-600 VAC \& 20-1000 VDC) associated with stored energy. Engineered with redundant circuitry, the power alert is powered by the same voltage that it indicates. The unit is easily installed into the panels through a standard push-button 33 mm knockouts.

The UPA-200 is ideal for mounting on the front controller door panel. The use of fiber-optics on this unit to transmit the LED lights to the enclosure door allows the unit to be mounted on an ungrounded door panel due to no voltage present on panel.

The eight detector UPA-200 visually alerts to the presence of dangerous AC or DC (Stored Energy) potentials occuring between any combination of the four minitored input lines (L1, L2, L3, GND). Two LED indicators are assigned to each input line are designate " + " and "-". For each input line carrying an AC potential (bi-polar), both the "+" and "-" LEDs will be active. A DC or Stored Energy potential will illuminate the "+" LED for the positive line and the "-" LED for the negative line.

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline OPERATIONAL RANGE & AC 20-600 VAC/20-1000 VDC \\
\hline MAXIMUM VOLTAGE & 750 VAC/1000 VDC line to line \\
\hline DETECTION THRESHOLDS & 14 VAC 3-Phase/18.5 VAC Single 15 VDC Stored Energy \\
\hline POWER CONSUMPTION & 1.2 Watts @ 750 VAC \\
\hline OPERATING TEMPERATURE & \(-4^{\circ}\) to \(131^{\circ} \mathrm{F}\left(-20^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & Totally Encapsulated UL Type 4X, 12, 13* \\
\hline TERMINATIONS & (4) \(6 \mathrm{ft}, 18\) AWG 1000V, UL-1452 \\
\hline
\end{tabular}
WEIGHT 7 oz .

\section*{ORDERING INFORMATION *}
\begin{tabular}{|c|c|}
\hline MODEL NUMBER & DESCRIPTION \\
\hline UPA-200-12 & \begin{tabular}{c}
30 mm Universal Power \\
Fiber Optic Alert \\
\\
\\
\end{tabular} \begin{tabular}{cc|}
& 24" Fiber Optic
\end{tabular} \\
\hline UPA-200-24 Optic \\
\hline UPA-200-48 & 48 Fiber Optic \\
\hline UPA-WP130 & ANSI Warning Plate \\
\hline UPA-200-DIV2-XX & Class 1 Div 2 \\
\hline
\end{tabular}
*Consult factory for various fiber optic cable lengths available

\section*{DIMENSIONS}

\section*{OPERATION}

With nominal 3-phase line voltage applied, a flashing green NORMAL LED gives positive indication of a good fuse and integrity of the wire connection to each side of the fuse. \({ }^{1}\)
A flashing red FAULT LED gives positive indication of an unconnected or open fuse, or a BFA wiring fault that needs corrected such as a lost connection to either side of the fuse or mismatched line and load wires. \({ }^{2}\)

When phase loss occurs, both FAULT and NORMAL LEDS will extinguish. \({ }^{3}\) The BFA will continue to indicate the status of the fuse during a phase loss if a regenerated voltage is produced on the open phase from a rotating motor. \({ }^{4}\)
1234 BFA-SERIES Troubleshooting Guide

\section*{SPECIFICATIONS}

\section*{Fuse Status Indicator}
- Shows Normal and Open Fuse - Mounts External to Pane
- View Status from a Distance
- Reports Connection Integrity
- Universal Input 208-600 VAC
- For All Fuses UL Class H, J, K, R, RK
- Vertical or Horizontal Mount

\section*{BFA-SERIES 3 PHASE FUSE STATUS INDICATOR TROUBLESHOOTING GUIDE}

A. Normal, fuse good, electrical contact across fuse
2. OFF FLASHING
A. Unconnected or blown fuse
B. Bad Connection Load Side (white stripe wire)
C. Both of the above
3.

A. Phase voltage loss with no motor regeneration
B. The above accompanied with an unconnected or blown fuse
4.

A. Bad Connection Line Side (solid color wire)
B. The above accompanied with an unconnected or blown fuse
C. Phase Voltage loss with motor regeneration accompanied with an unconnected or blown fuse
5.
OFF FLASHING

A. (2) Unconnected or blown fuses
B. Corresponding wires interchanged between solid colors or white stripe colors
C. 1 or 2 unconnected or blown fuses and \(B\)

A. (3) Unconnected or blown fuses
B. Line Side connections do not correspond to Load Side connections
C. 1 or more unconnected or blown fuses and \(B\)

CAUTION: The BFA should not be confused with ATC Diversified Electronics 3-Phase Voltage Detectors. The BFA is designed to detect blown fuses and not voltage potentials from Phase-to-Ground or Phase-to-Phase in the 40 VAC range and up. It should be understood that dangerous voltage potentials can still exist within the panel even though the BFA has no LEDs flashing. For voltage detection see The ATC Diversified UPA Series Power Alerts.

\section*{3-Phase Ground Fault Display}

DIMENSIONS (INCHES)

WIRING

The ATC Diversified Electronics GFD Series is intended for the use on ungrounded systems to detect and indicate the phase of the first ground fault condition. This enables corrective action to avoid the potential hazards resulting from a second ground fault.

\section*{OPERATION}

With nominal 3 phase line voltage applied, a flashing NORMAL green LED gives indication of a non-fault condition and integrity of the wire connection to the corresponding phase.
A flashing red LED gives positive FAULT indication of either a phase-toground fault, or a lost connection to the corresponding phase.

NOTE: Distributed capacitance to ground or equally loaded phases to ground will de-sensitize detection and will require lower phase-to-ground resistance to produce a FAULT indication.

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline NOMINAL VOLTAGE & 208-600 VAC, \(\pm 10 \%\), Phase-to-Phase,
\[
50 / 60 \mathrm{~Hz}
\] \\
\hline MAX. CONTINUOUS VOLTAGE & 660 VAC, Phase-to-Phase \\
\hline REV. CONNECTION PROTECTED & Yes \\
\hline DETECTION THRESHOLD & \[
\begin{aligned}
& 11.7 \mathrm{k} \Omega \pm 20 \% @ 50 \mathrm{~Hz} \text {; } \\
& 9.3 \mathrm{k} \Omega \pm 20 \% @ 60 \mathrm{~Hz} \\
& \text { Single Phase-to-Ground }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{DETECTOR INDUCED FAULT CURRENT} & \[
\begin{array}{ll}
\hline 50 \mathrm{~Hz} & \begin{array}{l}
7.5 \mathrm{~mA} @ 600 \text { VAC } \\
\\
\\
\text { (1 Phase-to-Ground shorted) }
\end{array} \\
\hline
\end{array}
\] \\
\hline & \begin{tabular}{ll}
\hline 60 Hz & \(9 \mathrm{~mA} @ 600\) VAC \\
& (1 Phase-to-Ground shorted)
\end{tabular} \\
\hline FRESNEL LENS & Normal (3) Green LEDs, 2 Flashes/Sec \\
\hline INDICATORS & Fault (3) Red LEDs, 2 Flashes/Sec \\
\hline APPARENT POWER & \(50 \mathrm{~Hz} \quad 2.5 \mathrm{VA} @ 600 \mathrm{VAC}\) \\
\hline REQUIRED & 60 Hz 3 VA @ 600 VAC \\
\hline TEMPERATURE & Operate \(\quad 32^{\circ}\) to \(131^{\circ} \mathrm{F}\left(0^{\circ}\right.\) to \(\left.+55^{\circ} \mathrm{C}\right)\) \\
\hline RATINGS & Storage \(\quad-40^{\circ}\) to \(185^{\circ} \mathrm{F}\left(-40^{\circ}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
\hline ENCLOSURE & 94V-0 Flame Retardant Black ABS Plastic, Panel Mount with 1/4" Plastic Electrical Conduit Adapter, Encapsulated for Environmental Protection \\
\hline
\end{tabular}

TERMINATIONS
(4) 2 ft ., 18 AWG, \(600 \mathrm{~V}, 105^{\circ} \mathrm{C} \mathrm{PVC}\) Stranded Wire w/ Wire Pin Terminations, racketed with 18" Slit Nylon Corrugated Tubing, .556" 0.D.
WEIGHT
NET: 3.52 oz Shipping: 5.12 oz

ORDERING INFORMATION
\begin{tabular}{|c|c|}
\hline MODEL NUMBER & DESCRIPTION \\
\hline GFD-100 & Vertical Mount \\
\hline GFD-200 & Horizontal Mount \\
\hline
\end{tabular}

\section*{RELAY SOCKETS}

\section*{SURFACE MOUNTED— RB-08}

Recommended for use with all 8 pin octal plug-in devices. UL Recognized and CSA Certified for 10 Amps @ 600 VAC. The molded thermoplastic base has brass, nickel plated inserts with \#6-32 steel, nickel plated screws.

\section*{SURFACE MOUNTED— RB-11}

Recommended for use with all devices using 8 or 11 pin plug-in bases. UL Recognized and CSA certified for 10 Amp @ 300 VAC. The molded thermoplastic base has brass, nickel plated inserts with \#6-32 steel, nickel plated screws.

\section*{DIN RAIL/SURFACE MOUNTED—OT-08}

DIN Rail mount. Recommended for use with all 8 pin octal plugin devices. UL Recognized and CSA Certified for 10 Amps @ 600 VAC. The molded thermoplastic base has brass, nickel plated inserts with \#6-32 nickel plated screws.

\section*{DIN RAIL/SURFACE MOUNTED—PF083A}

Recommended for use with all 8 pin octal plug-in devices. UL Recognized and CSA Certified for 10 Amps @ 300 VAC. The molded polycarbonate base has brass, nickel plated inserts with \#6-40 steel, nickel plated screws and captive self-lifting terminal clamps.

\section*{SURFACE MOUNTED—70-463-1}

Recommended for use with all 0.187 blade 11 Pin Square base plug-in devices. UL Recognized and CSA Certified for 10 Amps @ 300 VAC. The molded thermoplastic base has brass, nickel plated inserts with \#6-32 steel, nickel plated screws.

DIN RAIL/SURFACE MOUNTED—PF113A
Recommended for use with all devices using 8 or 11 pin plugin bases.UL Recognized and CSA certified for 10 Amps @ 300 VAC. The molded polycarbonate base has brass, nickel plated inserts with \#6-40 steel, nickel plated screws and captive self lifting terminal clamps.

\section*{ACCESSORIES}

ADJUSTMENT—101026105
Recommended for use with all the ATC Diversified Electronics family of "remote adjustable" timers. Proper spacing is maintained for UL and CSA applications. This linear taper potentiometer has a non-conductive shaft attached to the internal conductive plastic wafer. The brass bushing is \(3 / 8^{\prime \prime} \times 32 \mathrm{NEF}\) and accepts adjustment hardware 100054070, 100054071

ADJUSTMENT HARDWARE LOCK NUT—100054070
Recommended for use with any adjustment or switch having a \(3 / 8 " \times 32 N E F\) bushing and \(1 / 4\) " shaft. When the nut is tightened, the tapered center hole squeezes the shaft, preventing vibration mis-adjustment. Molded from black glass filled nylon with a UL 94V-0 rating.

FLAT NUT—100054071
Recommended for use with any adjustment or switch having a \(3 / 8^{\prime \prime} \times 32\) NEF bushing and \(1 / 4\) " shaft. Ideally suited for a 101026105 adjustment and 100054073 knob. This combina101026105 adjustment and 100054073 knob. This combina-
tion allows for no exposed metal parts required by UL and CSA.
 Molded from black, glass filled nylon with a UL 94V-0 rating.

KNOB—100054073
Recommended for use with any adjustment or switch having a \(1 / 4\) " shaft. This knob slips over the shaft and is secured in place by a \#6-32 set screw. The knurled, mirror finished, black thermostat knob has a white pointer line for reference.

HOLD DOWN BRACKET—100054080
Recommended for use with ATC-Diversified Electronics devices having octal or magnal plug-in bases. Made of .040 plated steel. The bracket secures to the enclosure via four (4) corner screws and can be factory assembled to any device when ordered.

SADDLE CLAMP SCREW—100054226
The Saddle Clamp Screw can be used with all ATC-Diversified Electronics Style E surface mount enclosures.

SPRING CLIP—100054275
Spring Clip. Set of 2. Can only be used with the PF083A socket.

BRKT-A- 100054330
Panel mount bracket for style A enclosure
```


[^0]:    * 240 V option limited to availability

[^1]:    ** Relay contacts to be wired with same polarity.

